Skip to contents

Single-Cell Omics analysis Pipeline

scop scop-package
scop Single-Cell Omics analysis Pipeline
scop_logo()
scop logo
print(<logo>)
print logo

Package Setup

PrepareEnv()
Prepare the scop Python environment by installing the required dependencies and setting up the environment.
conda_install()
Enhanced conda installation
conda_python()
Find the path to Python associated with a conda environment
find_conda()
Find an appropriate conda binary
env_requirements()
env_requirements function
check_python()
Check and install python packages
check_r()
Check and install R packages
env_exist()
Check if a conda environment exists
env_info()
Print environment information
exist_python_pkgs()
Check if the python package exists in the environment
install_miniconda2()
Enhanced miniconda installation
installed_python_pkgs()
Show all the python packages in the environment

Data Processing and Quality Control

standard_scop()
Standard scop
RunCellQC()
Run cell-level quality control for single cell RNA-seq data.
RunDoubletCalling()
Run doublet-calling for single cell RNA-seq data.
db_DoubletDetection()
Run doublet-calling with DoubletDetection
db_Scrublet()
Run doublet-calling with Scrublet
db_scDblFinder()
Run doublet-calling with scDblFinder
db_scds()
Run doublet-calling with scds
check_data_type()
Check and report the type of data
check_srt_list()
Check and preprocess a list of seurat objects
check_srt_merge()
Check and preprocess a merged seurat object
AddFeaturesData()
AddFeaturesData
GetFeaturesData()
GetFeaturesData
RecoverCounts()
Attempt to recover raw counts from the normalized matrix.
CellScoring()
CellScoring
CC_GenePrefetch()
Prefetch cycle gene
is_outlier()
Detect outliers using MAD(Median Absolute Deviation) method
DefaultReduction()
Find the default reduction name in a Seurat object.

Data Integration and Batch Effect Removal

integration_scop()
integration_scop
RunCSSMap()
Single-cell reference mapping with CSS method
RunHarmony2()
Run Harmony algorithm
RunKNNMap()
Single-cell reference mapping with KNN method
RunPCAMap()
Single-cell reference mapping with PCA method
RunScmap()
Annotate single cells using scmap.
RunSeuratMap()
Single-cell reference mapping with Seurat method
RunSingleR()
Annotate single cells using SingleR
RunSymphonyMap()
Single-cell reference mapping with Symphony method
BBKNN_integrate()
BBKNN_integrate
CSS_integrate()
CSS_integrate
ComBat_integrate()
Combat_integrate
Conos_integrate()
Conos_integrate
Harmony_integrate()
Harmony_integrate
LIGER_integrate()
LIGER_integrate
MNN_integrate()
MNN_integrate
Scanorama_integrate()
Scanorama_integrate
Seurat_integrate()
Seurat_integrate
scVI_integrate()
scVI_integrate
Uncorrected_integrate()
Uncorrected_integrate
fastMNN_integrate()
fastMNN_integrate

Dimensionality Reduction and Clustering

RunDimReduction()
Run dimensionality reduction
RunGLMPCA()
Run GLMPCA (generalized version of principal components analysis)
RunMDS()
Run MDS (multi-dimensional scaling)
RunNMF()
Run NMF (non-negative matrix factorization)
RunUMAP2()
Run UMAP (Uniform Manifold Approximation and Projection)
RunPaCMAP()
Run PaCMAP (Pairwise Controlled Manifold Approximation)
RunTriMap()
Run TriMap (Large-scale Dimensionality Reduction Using Triplets)
RunPHATE()
Run PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)
RunDM()
Run DM (diffusion map)
RunFR()
Run Force-Directed Layout (Fruchterman-Reingold algorithm)
RunLargeVis()
Run LargeVis (Dimensionality Reduction with a LargeVis-like method)
RunKNNPredict()
RunKNNPredict

Differential Analysis and Enrichment

FindExpressedMarkers()
FindExpressedMarkers
RunDEtest()
Differential gene test
RunGSEA()
Perform the enrichment analysis (GSEA) on the genes
RunEnrichment()
Perform the enrichment analysis (over-representation) on the genes
RunDynamicEnrichment()
RunDynamicEnrichment

Trajectory Analysis and Dynamic Processes

RunMonocle2()
Run Monocle2 analysis
RunMonocle3()
Run Monocle3 analysis
RunPAGA()
Run PAGA analysis
RunPalantir()
Run Palantir analysis
RunSlingshot()
RunSlingshot
RunSCVELO()
Run scVelo workflow
RunWOT()
Run WOT analysis
RunDynamicFeatures()
RunDynamicFeatures

Visualization Functions

CellDimPlot()
Visualize cell groups on a 2-dimensional reduction plot
CellDimPlot3D()
3D-Dimensional reduction plot for cell classification visualization.
CellDensityPlot()
CellDensityPlot
CellCorHeatmap()
CellCorHeatmap
CellStatPlot()
Statistical plot of cells
DynamicPlot()
DynamicPlot
DynamicHeatmap()
Heatmap plot for dynamic features along lineages
EnrichmentPlot()
EnrichmentPlot
FeatureDimPlot()
Visualize feature values on a 2-dimensional reduction plot
FeatureDimPlot3D()
3D-Dimensional reduction plot for gene expression visualization.
FeatureHeatmap()
FeatureHeatmap
FeatureCorPlot()
Features correlation plot This function creates a correlation plot to visualize the pairwise correlations between selected features in a Seurat object.
FeatureStatPlot()
Statistical plot of features
LineagePlot()
LineagePlot
GraphPlot()
GraphPlot
GroupHeatmap()
GroupHeatmap
GSEAPlot()
GSEA Plot
PAGAPlot()
PAGA plot
panel_fix() panel_fix_overall()
Set the panel width/height of a plot object to a fixed value.
ProjectionPlot()
Projection Plot
StatPlot()
StatPlot
VelocityPlot()
Velocity Plot
VolcanoPlot()
VolcanoPlot

Themes

adjcolors()
Convert a color with arbitrary transparency to a fixed color
blendcolors()
Blend colors
geom_alluvial()
geom_alluvial
geom_alluvial_text() geom_alluvial_label()
geom_alluvial_label
geom_sankey()
geom_sankey
geom_sankey_bump()
geom_sankey_bump
geom_sankey_label() geom_sankey_text()
geom_sankey_label
palette_scop()
Color palettes collected in scop.
show_palettes()
Show the color palettes
theme_blank()
Blank theme
theme_scop()
scop theme
theme_sankey() theme_alluvial() theme_sankey_bump()
sankey_themes

Web SCExplorer

PrepareSCExplorer()
Prepare Seurat objects for the SCExplorer
RunSCExplorer()
RunSCExplorer

Utility Functions

adata_to_srt()
Convert an anndata object to a seurat object using reticulate
AnnotateFeatures()
AnnotateFeatures
capitalize()
Capitalizes the characters Making the first letter uppercase
compute_velocity_on_grid()
Compute velocity on grid
download()
Download File from the Internet
drop_data()
Drop all data in the plot (only one observation is kept)
get_vars()
Get used vars in a ggplot object
GeneConvert()
Gene ID conversion function using biomart
GetAssayData5()
GetAssayData5
invoke_fun()
Invoke a function with a list of arguments
make_long()
make_long
RenameClusters()
Rename clusters for the Seurat object
RenameFeatures()
Rename features for the Seurat object
segements_df()
Shorten and offset the segment
slim_data()
Drop unused data from the plot to reduce the object size
srt_append()
Append a Seurat object to another
srt_to_adata()
Convert a seurat object to an anndata object using reticulate
srt_reorder()
Reorder idents by the gene expression
try_get()
Try to evaluate an expression a set number of times before failing
unnest_fun()
Implement similar functions to the unnest function in the tidyr package

Database Operations

CreateDataFile()
CreateDataFile
CreateMetaFile()
CreateMetaFile
FetchH5()
Fetch data from the hdf5 file
ListDB()
ListDB
PrepareDB()
Prepare the gene annotation databases

Example Data

ifnb_sub
A subsetted version of 'ifnb' datasets
lifemap_cell lifemap_compartment lifemap_organ
Embryonic Development Database from LifeMap Discovery
palette_list
A list of palettes for use in data visualization
panc8_sub
A subsetted version of human 'panc8' datasets
pancreas_sub
A subsetted version of mouse 'pancreas' datasets
ref_scHCL ref_scMCA ref_scZCL
Reference datasets for cell type annotation in single-cell RNA data
words_excluded
Excluded words in keyword enrichment analysis and extraction