Skip to contents

Single-Cell Omics analysis Pipeline

scop scop-package
Single-Cell Omics analysis Pipeline
scop_logo()
scop logo

Package Management

check_python()
Check and install python packages
check_r()
Check and install R packages
conda_install()
Enhanced conda installation
conda_python()
Find the path to Python associated with a conda environment
env_exist()
Check if a conda environment exists
env_info()
Print environment information
env_requirements()
Python environment requirements
exist_python_pkgs()
Check if the python package exists in the environment
find_conda()
Find an appropriate conda binary
install_miniconda2()
Enhanced miniconda installation
installed_python_pkgs()
Show all the python packages in the environment
ListEnv()
List conda environments
PrepareEnv()
Prepare the virtual environment
remove_python()
Remove Python packages from conda environment
remove_r()
Check and remove R packages
RemoveEnv()
Remove a conda environment

scop pipeline

integration_scop()
The integration_scop function
standard_scop()
Standard workflow for scop

Data Processing

adata_to_srt()
Convert an anndata object to a seurat object using reticulate
CellScoring()
Cell scoring
CheckDataType()
Check and report the type of data in Seurat object
CheckDataList()
Check and preprocess a list of Seurat objects
CheckDataMerge()
Check and preprocess a merged seurat object
CycGenePrefetch()
Prefetch cell cycle genes
DefaultReduction()
Find the default reduction name in a Seurat object
FetchDataZero()
FetchData but with zeroes for unavailable genes
GeneConvert()
Gene ID conversion function using biomart
GetAssayData5()
Get expression data from Assay5 or Seurat object
is_outlier()
Detect outliers using MAD(Median Absolute Deviation) method
RecoverCounts()
Attempt to recover raw counts from the normalized matrix
RenameClusters()
Rename clusters for the Seurat object
srt_append()
Append a Seurat object to another
srt_to_adata()
Convert a Seurat object to an AnnData object
srt_reorder()
Reorder idents by the gene expression

Feature Processing

AddFeaturesData()
AddFeaturesData
AnnotateFeatures()
Annotate Features
GetFeaturesData()
GetFeaturesData
GetSimilarFeatures()
Find genes with expression patterns similar to the genes you've specified.
RenameFeatures()
Rename features for the Seurat object

Quality Control

db_DoubletDetection()
Run doublet-calling with DoubletDetection
db_scDblFinder()
Run doublet-calling with scDblFinder
db_scds()
Run doublet-calling with scds
db_Scrublet()
Run doublet-calling with Scrublet
RunCellQC()
Run cell-level quality control for single cell RNA-seq data.
RunDoubletCalling()
Run doublet-calling for single cell RNA-seq data.

Dimensionality Reduction and Clustering

RunDimReduction()
Run dimensionality reduction
RunDM()
Run DM (diffusion map)
RunFR()
Run Force-Directed Layout (Fruchterman-Reingold algorithm)
RunGLMPCA()
Run GLMPCA (generalized version of principal components analysis)
RunMDS()
Run MDS (multi-dimensional scaling)
RunNMF()
Run NMF (non-negative matrix factorization)
RunUMAP2()
Run UMAP (Uniform Manifold Approximation and Projection)
RunPaCMAP()
Run PaCMAP (Pairwise Controlled Manifold Approximation)
RunTriMap()
Run TriMap (Large-scale Dimensionality Reduction Using Triplets)
RunPHATE()
Run PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)
RunLargeVis()
Run LargeVis (Dimensionality Reduction with a LargeVis-like method)
RunKNNPredict()
Run KNN prediction

Data Integration and Batch Effect Removal

RunCSSMap()
Single-cell reference mapping with CSS method
RunHarmony2()
Run Harmony algorithm
RunKNNMap()
Single-cell reference mapping with KNN method
RunPCAMap()
Single-cell reference mapping with PCA method
RunScmap()
Annotate single cells using scmap.
RunSeuratMap()
Single-cell reference mapping with Seurat method
RunSingleR()
Annotate single cells using SingleR
RunSymphonyMap()
Single-cell reference mapping with Symphony method
BBKNN_integrate()
BBKNN_integrate
CSS_integrate()
CSS_integrate
ComBat_integrate()
Combat_integrate
Conos_integrate()
Conos_integrate
Harmony_integrate()
Harmony_integrate
LIGER_integrate()
LIGER_integrate
MNN_integrate()
Integrate data using MNN
Scanorama_integrate()
Scanorama_integrate
Seurat_integrate()
Seurat_integrate
scVI_integrate()
scVI_integrate
Uncorrected_integrate()
Uncorrected_integrate
fastMNN_integrate()
fastMNN_integrate

Differential Analysis and Enrichment

FindExpressedMarkers()
FindExpressedMarkers
RunDEtest()
Differential gene test
RunGSEA()
Perform the enrichment analysis (GSEA) on the genes
RunEnrichment()
Perform the enrichment analysis (over-representation) on the genes
RunDynamicEnrichment()
RunDynamicEnrichment

Trajectory Analysis

RunMonocle2()
Run Monocle2 analysis
RunMonocle3()
Run Monocle3 analysis
RunPAGA()
Run PAGA analysis
RunPalantir()
Run Palantir analysis
RunSlingshot()
RunSlingshot
RunSCVELO()
Run scVelo workflow
RunWOT()
Run WOT analysis
RunDynamicFeatures()
RunDynamicFeatures

Visualization Functions

CellDimPlot()
Visualize cell groups on a 2-dimensional reduction plot
CellDimPlot3D()
3D-Dimensional reduction plot for cell classification visualization.
CellDensityPlot()
CellDensityPlot
CellCorHeatmap()
The Cell Correlation Heatmap
CellStatPlot()
Statistical plot of cells
DynamicPlot()
Plot dynamic features across pseudotime
DynamicHeatmap()
Heatmap plot for dynamic features along lineages
EnrichmentPlot()
Enrichment Plot
FeatureDimPlot()
Visualize feature values on a 2-dimensional reduction plot
FeatureDimPlot3D()
3D-Dimensional reduction plot for gene expression visualization.
FeatureHeatmap()
Feature Heatmap
FeatureCorPlot()
Features correlation plot
FeatureStatPlot()
Statistical plot of features
GraphPlot()
Graph Plot
GroupHeatmap()
The Group Heatmap
GSEAPlot()
GSEA Plot
LineagePlot()
Lineage Plot
PAGAPlot()
PAGA plot
ProjectionPlot()
Projection Plot
StatPlot()
Statistic Plot
TACSPlot()
Transcript-averaged cell scoring (TACS)
VelocityPlot()
Velocity Plot
VolcanoPlot()
Volcano Plot

Plotting Functions

adjcolors()
Convert a color with specified alpha level
blendcolors()
Blends a list of colors using the specified blend mode
compute_velocity_on_grid()
Compute velocity on grid
drop_data()
Drop unused data in the plot
get_vars()
Get used vars in a ggplot object
geom_alluvial()
geom_alluvial
geom_alluvial_text() geom_alluvial_label()
geom_alluvial_label
geom_sankey()
geom_sankey
geom_sankey_bump()
geom_sankey_bump
geom_sankey_label() geom_sankey_text()
geom_sankey_label
make_long()
make_long
palette_colors()
Color palettes collected
palette_list
A list of palettes for use in data visualization
panel_fix() panel_fix_overall()
Set the panel width/height of a plot to a fixed value
print(<scop_logo>)
print scop logo
segements_df()
Shorten and offset the segment
slim_data()
Slim unused data in the plot
show_palettes()
Show the color palettes
theme_blank()
Blank theme
theme_scop()
The default theme for scop plot function.
theme_sankey() theme_alluvial() theme_sankey_bump()
sankey_themes

SCExplorer

CreateDataFile()
Create data file
CreateMetaFile()
Create Meta File
FetchH5()
Fetch data from the hdf5 file
PrepareSCExplorer()
Prepare Seurat objects for the SCExplorer
RunSCExplorer()
Run SCExplorer

Database Operations

ListDB()
List cached databases
PrepareDB()
Prepare the gene annotation databases

Data

ifnb_sub
A subsetted version of 'ifnb' datasets
panc8_sub
A subsetted version of human 'panc8' datasets
pancreas_sub
A subsetted version of mouse 'pancreas' datasets
ref_scHCL ref_scMCA ref_scZCL
Reference datasets for cell type annotation in single-cell RNA data
words_excluded
Excluded words in keyword enrichment analysis and extraction