Skip to contents

This function takes a Seurat object and converts it to an anndata object using the reticulate package.

Usage

srt_to_adata(
  srt,
  features = NULL,
  assay_x = "RNA",
  layer_x = "counts",
  assay_y = c("spliced", "unspliced"),
  layer_y = "counts",
  convert_tools = FALSE,
  convert_misc = FALSE,
  verbose = TRUE
)

Arguments

srt

A Seurat object.

features

Optional vector of features to include in the anndata object. Defaults to all features in assay_x.

assay_x

Assay to convert as the main data matrix in the anndata object. Default is "RNA".

layer_x

Layer name for assay_x in the Seurat object. Default is "counts".

assay_y

Assays to convert as layers in the anndata object. Default is c("spliced", "unspliced").

layer_y

Layer names for the assay_y in the Seurat object. Default is "counts".

convert_tools

Whether to convert the tool-specific data. Default is FALSE.

convert_misc

Whether to convert the miscellaneous data. Default is FALSE.

verbose

Whether to print the message. Default is TRUE.

Value

A anndata object.

Examples

data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
#>  [2025-09-20 14:07:29] Start standard scop workflow...
#>  [2025-09-20 14:07:30] Checking a list of <Seurat> object...
#> ! [2025-09-20 14:07:30] Data 1/1 of the `srt_list` is "unknown"
#>  [2025-09-20 14:07:30] Perform `NormalizeData()` with `normalization.method = 'LogNormalize'` on the data 1/1 of the `srt_list`...
#>  [2025-09-20 14:07:32] Perform `Seurat::FindVariableFeatures()` on the data 1/1 of the `srt_list`...
#>  [2025-09-20 14:07:32] Use the separate HVF from srt_list
#>  [2025-09-20 14:07:33] Number of available HVF: 2000
#>  [2025-09-20 14:07:33] Finished check
#>  [2025-09-20 14:07:33] Perform `Seurat::ScaleData()`
#> Warning: Different features in new layer data than already exists for scale.data
#>  [2025-09-20 14:07:33] Perform pca linear dimension reduction
#> StandardPC_ 1 
#> Positive:  Aplp1, Cpe, Gnas, Fam183b, Map1b, Hmgn3, Pcsk1n, Chga, Tuba1a, Bex2 
#> 	   Syt13, Isl1, 1700086L19Rik, Pax6, Chgb, Scgn, Rbp4, Scg3, Gch1, Camk2n1 
#> 	   Cryba2, Pcsk2, Pyy, Tspan7, Mafb, Hist3h2ba, Dbpht2, Abcc8, Rap1b, Slc38a5 
#> Negative:  Spp1, Anxa2, Sparc, Dbi, 1700011H14Rik, Wfdc2, Gsta3, Adamts1, Clu, Mgst1 
#> 	   Bicc1, Ldha, Vim, Cldn3, Cyr61, Rps2, Mt1, Ptn, Phgdh, Nudt19 
#> 	   Smtnl2, Smco4, Habp2, Mt2, Col18a1, Rpl12, Galk1, Cldn10, Acot1, Ccnd1 
#> StandardPC_ 2 
#> Positive:  Rbp4, Tagln2, Tuba1b, Fkbp2, Pyy, Pcsk2, Iapp, Tmem27, Meis2, Tubb4b 
#> 	   Pcsk1n, Dbpht2, Rap1b, Dynll1, Tubb2a, Sdf2l1, Scgn, 1700086L19Rik, Scg2, Abcc8 
#> 	   Atp1b1, Hspa5, Fam183b, Papss2, Slc38a5, Scg3, Mageh1, Tspan7, Ppp1r1a, Ociad2 
#> Negative:  Neurog3, Btbd17, Gadd45a, Ppp1r14a, Neurod2, Sox4, Smarcd2, Mdk, Pax4, Btg2 
#> 	   Sult2b1, Hes6, Grasp, Igfbpl1, Gpx2, Cbfa2t3, Foxa3, Shf, Mfng, Tmsb4x 
#> 	   Amotl2, Gdpd1, Cdc14b, Epb42, Rcor2, Cotl1, Upk3bl, Rbfox3, Cldn6, Cer1 
#> StandardPC_ 3 
#> Positive:  Nusap1, Top2a, Birc5, Aurkb, Cdca8, Pbk, Mki67, Tpx2, Plk1, Ccnb1 
#> 	   2810417H13Rik, Incenp, Cenpf, Ccna2, Prc1, Racgap1, Cdk1, Aurka, Cdca3, Hmmr 
#> 	   Spc24, Kif23, Sgol1, Cenpe, Cdc20, Hist1h1b, Cdca2, Mxd3, Kif22, Ska1 
#> Negative:  Anxa5, Pdzk1ip1, Acot1, Tpm1, Anxa2, Dcdc2a, Capg, Sparc, Ttr, Pamr1 
#> 	   Clu, Cxcl12, Ndrg2, Hnf1aos1, Gas6, Gsta3, Krt18, Ces1d, Atp1b1, Muc1 
#> 	   Hhex, Acadm, Spp1, Enpp2, Bcl2l14, Sat1, Smtnl2, 1700011H14Rik, Tgm2, Fam159a 
#> StandardPC_ 4 
#> Positive:  Glud1, Tm4sf4, Akr1c19, Cldn4, Runx1t1, Fev, Pou3f4, Gm43861, Pgrmc1, Arx 
#> 	   Cd200, Lrpprc, Hmgn3, Ppp1r14c, Pam, Etv1, Tsc22d1, Slc25a5, Akap17b, Pgf 
#> 	   Fam43a, Emb, Jun, Krt8, Dnajc12, Mid1ip1, Ids, Rgs17, Uchl1, Alcam 
#> Negative:  Ins2, Ins1, Ppp1r1a, Nnat, Calr, Sytl4, Sdf2l1, Iapp, Pdia6, Mapt 
#> 	   G6pc2, C2cd4b, Npy, Gng12, P2ry1, Ero1lb, Adra2a, Papss2, Arhgap36, Fam151a 
#> 	   Dlk1, Creld2, Gip, Tmem215, Gm27033, Cntfr, Prss53, C2cd4a, Lyve1, Ociad2 
#> StandardPC_ 5 
#> Positive:  Pdx1, Nkx6-1, Npepl1, Cldn4, Cryba2, Fev, Jun, Chgb, Gng12, Adra2a 
#> 	   Mnx1, Sytl4, Pdk3, Gm27033, Nnat, Chga, Ins2, 1110012L19Rik, Enho, Krt7 
#> 	   Mlxipl, Tmsb10, Flrt1, Pax4, Tubb3, Prrg2, Gars, Frzb, BC023829, Gm2694 
#> Negative:  Irx2, Irx1, Gcg, Ctxn2, Tmem27, Ctsz, Tmsb15l, Nap1l5, Pou6f2, Gria2 
#> 	   Ghrl, Peg10, Smarca1, Arx, Lrpap1, Rgs4, Ttr, Gast, Tmsb15b2, Serpina1b 
#> 	   Slc16a10, Wnk3, Ly6e, Auts2, Sct, Arg1, Dusp10, Sphkap, Dock11, Edn3 
#>  [2025-09-20 14:07:34] Perform `Seurat::FindClusters()` with louvain and `cluster_resolution` = 0.6
#>  [2025-09-20 14:07:34] Reorder clusters...
#> ! [2025-09-20 14:07:34] Using `Seurat::AggregateExpression()` to calculate pseudo-bulk data for <Assay5>
#>  [2025-09-20 14:07:34] Perform umap nonlinear dimension reduction
#>  [2025-09-20 14:07:34] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#>  [2025-09-20 14:07:34] UMAP will return its model
#>  [2025-09-20 14:07:39] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#>  [2025-09-20 14:07:39] UMAP will return its model
#>  [2025-09-20 14:07:44] Run scop standard workflow done
adata <- srt_to_adata(pancreas_sub)
#>  [2025-09-20 14:07:45] Checking 2 packages in environment: scop_env
#>  [2025-09-20 14:07:46] Retrieving package list for environment: scop_env
#>  [2025-09-20 14:07:48] Found 205 packages installed
#>  [2025-09-20 14:07:48] scanpy version: 1.11.3
#>  [2025-09-20 14:07:48] numpy version: 1.26.4
#>  [2025-09-20 14:07:48] Converting <Seurat> to <AnnData> ...
#> ! [2025-09-20 14:07:48] "misc" slot is not converted
#> ! [2025-09-20 14:07:48] "tools" slot is not converted
#>  [2025-09-20 14:07:48] Convert <Seurat> object to <AnnData> object completed
adata
#> AnnData object with n_obs × n_vars = 1000 × 15998
#>     obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'S_score', 'G2M_score', 'nCount_spliced', 'nFeature_spliced', 'nCount_unspliced', 'nFeature_unspliced', 'CellType', 'SubCellType', 'Phase', 'Standardpca_SNN_res.0.6', 'ident', 'Standardpcaclusters', 'Standardclusters'
#>     var: 'features', 'highly_variable'
#>     obsm: 'X_pca', 'X_X_pca', 'X_umap', 'X_X_umap', 'Standardpca', 'X_Standardpca', 'StandardpcaUMAP2D', 'X_StandardpcaUMAP2D', 'StandardpcaUMAP3D', 'X_StandardpcaUMAP3D', 'StandardUMAP2D', 'X_StandardUMAP2D', 'StandardUMAP3D', 'X_StandardUMAP3D'
#>     layers: 'spliced', 'unspliced'
#>     obsp: 'distances', 'connectivities', 'Standardpca_KNN', 'Standardpca_SNN'

if (FALSE) { # \dontrun{
# Or save as a h5ad/loom file
adata$write_h5ad(
  "pancreas_sub.h5ad"
)
adata$write_loom(
  "pancreas_sub.loom",
  write_obsm_varm = TRUE
)
} # }