This function takes a Seurat object and converts it to an anndata object using the reticulate package.
Usage
srt_to_adata(
srt,
features = NULL,
assay_x = "RNA",
layer_x = "counts",
assay_y = c("spliced", "unspliced"),
layer_y = "counts",
convert_tools = FALSE,
convert_misc = FALSE,
verbose = TRUE
)
Arguments
- srt
A Seurat object.
- features
Optional vector of features to include in the anndata object. Defaults to all features in
assay_x
.- assay_x
Assay to convert as the main data matrix in the anndata object. Default is
"RNA"
.- layer_x
Layer name for assay_x in the Seurat object. Default is
"counts"
.- assay_y
Assays to convert as layers in the anndata object. Default is
c("spliced", "unspliced")
.- layer_y
Layer names for the assay_y in the Seurat object. Default is
"counts"
.- convert_tools
Whether to convert the tool-specific data. Default is
FALSE
.- convert_misc
Whether to convert the miscellaneous data. Default is
FALSE
.- verbose
Whether to print the message. Default is
TRUE
.
Examples
data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
#> ℹ [2025-09-20 14:07:29] Start standard scop workflow...
#> ℹ [2025-09-20 14:07:30] Checking a list of <Seurat> object...
#> ! [2025-09-20 14:07:30] Data 1/1 of the `srt_list` is "unknown"
#> ℹ [2025-09-20 14:07:30] Perform `NormalizeData()` with `normalization.method = 'LogNormalize'` on the data 1/1 of the `srt_list`...
#> ℹ [2025-09-20 14:07:32] Perform `Seurat::FindVariableFeatures()` on the data 1/1 of the `srt_list`...
#> ℹ [2025-09-20 14:07:32] Use the separate HVF from srt_list
#> ℹ [2025-09-20 14:07:33] Number of available HVF: 2000
#> ℹ [2025-09-20 14:07:33] Finished check
#> ℹ [2025-09-20 14:07:33] Perform `Seurat::ScaleData()`
#> Warning: Different features in new layer data than already exists for scale.data
#> ℹ [2025-09-20 14:07:33] Perform pca linear dimension reduction
#> StandardPC_ 1
#> Positive: Aplp1, Cpe, Gnas, Fam183b, Map1b, Hmgn3, Pcsk1n, Chga, Tuba1a, Bex2
#> Syt13, Isl1, 1700086L19Rik, Pax6, Chgb, Scgn, Rbp4, Scg3, Gch1, Camk2n1
#> Cryba2, Pcsk2, Pyy, Tspan7, Mafb, Hist3h2ba, Dbpht2, Abcc8, Rap1b, Slc38a5
#> Negative: Spp1, Anxa2, Sparc, Dbi, 1700011H14Rik, Wfdc2, Gsta3, Adamts1, Clu, Mgst1
#> Bicc1, Ldha, Vim, Cldn3, Cyr61, Rps2, Mt1, Ptn, Phgdh, Nudt19
#> Smtnl2, Smco4, Habp2, Mt2, Col18a1, Rpl12, Galk1, Cldn10, Acot1, Ccnd1
#> StandardPC_ 2
#> Positive: Rbp4, Tagln2, Tuba1b, Fkbp2, Pyy, Pcsk2, Iapp, Tmem27, Meis2, Tubb4b
#> Pcsk1n, Dbpht2, Rap1b, Dynll1, Tubb2a, Sdf2l1, Scgn, 1700086L19Rik, Scg2, Abcc8
#> Atp1b1, Hspa5, Fam183b, Papss2, Slc38a5, Scg3, Mageh1, Tspan7, Ppp1r1a, Ociad2
#> Negative: Neurog3, Btbd17, Gadd45a, Ppp1r14a, Neurod2, Sox4, Smarcd2, Mdk, Pax4, Btg2
#> Sult2b1, Hes6, Grasp, Igfbpl1, Gpx2, Cbfa2t3, Foxa3, Shf, Mfng, Tmsb4x
#> Amotl2, Gdpd1, Cdc14b, Epb42, Rcor2, Cotl1, Upk3bl, Rbfox3, Cldn6, Cer1
#> StandardPC_ 3
#> Positive: Nusap1, Top2a, Birc5, Aurkb, Cdca8, Pbk, Mki67, Tpx2, Plk1, Ccnb1
#> 2810417H13Rik, Incenp, Cenpf, Ccna2, Prc1, Racgap1, Cdk1, Aurka, Cdca3, Hmmr
#> Spc24, Kif23, Sgol1, Cenpe, Cdc20, Hist1h1b, Cdca2, Mxd3, Kif22, Ska1
#> Negative: Anxa5, Pdzk1ip1, Acot1, Tpm1, Anxa2, Dcdc2a, Capg, Sparc, Ttr, Pamr1
#> Clu, Cxcl12, Ndrg2, Hnf1aos1, Gas6, Gsta3, Krt18, Ces1d, Atp1b1, Muc1
#> Hhex, Acadm, Spp1, Enpp2, Bcl2l14, Sat1, Smtnl2, 1700011H14Rik, Tgm2, Fam159a
#> StandardPC_ 4
#> Positive: Glud1, Tm4sf4, Akr1c19, Cldn4, Runx1t1, Fev, Pou3f4, Gm43861, Pgrmc1, Arx
#> Cd200, Lrpprc, Hmgn3, Ppp1r14c, Pam, Etv1, Tsc22d1, Slc25a5, Akap17b, Pgf
#> Fam43a, Emb, Jun, Krt8, Dnajc12, Mid1ip1, Ids, Rgs17, Uchl1, Alcam
#> Negative: Ins2, Ins1, Ppp1r1a, Nnat, Calr, Sytl4, Sdf2l1, Iapp, Pdia6, Mapt
#> G6pc2, C2cd4b, Npy, Gng12, P2ry1, Ero1lb, Adra2a, Papss2, Arhgap36, Fam151a
#> Dlk1, Creld2, Gip, Tmem215, Gm27033, Cntfr, Prss53, C2cd4a, Lyve1, Ociad2
#> StandardPC_ 5
#> Positive: Pdx1, Nkx6-1, Npepl1, Cldn4, Cryba2, Fev, Jun, Chgb, Gng12, Adra2a
#> Mnx1, Sytl4, Pdk3, Gm27033, Nnat, Chga, Ins2, 1110012L19Rik, Enho, Krt7
#> Mlxipl, Tmsb10, Flrt1, Pax4, Tubb3, Prrg2, Gars, Frzb, BC023829, Gm2694
#> Negative: Irx2, Irx1, Gcg, Ctxn2, Tmem27, Ctsz, Tmsb15l, Nap1l5, Pou6f2, Gria2
#> Ghrl, Peg10, Smarca1, Arx, Lrpap1, Rgs4, Ttr, Gast, Tmsb15b2, Serpina1b
#> Slc16a10, Wnk3, Ly6e, Auts2, Sct, Arg1, Dusp10, Sphkap, Dock11, Edn3
#> ℹ [2025-09-20 14:07:34] Perform `Seurat::FindClusters()` with louvain and `cluster_resolution` = 0.6
#> ℹ [2025-09-20 14:07:34] Reorder clusters...
#> ! [2025-09-20 14:07:34] Using `Seurat::AggregateExpression()` to calculate pseudo-bulk data for <Assay5>
#> ℹ [2025-09-20 14:07:34] Perform umap nonlinear dimension reduction
#> ℹ [2025-09-20 14:07:34] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#> ℹ [2025-09-20 14:07:34] UMAP will return its model
#> ℹ [2025-09-20 14:07:39] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#> ℹ [2025-09-20 14:07:39] UMAP will return its model
#> ✔ [2025-09-20 14:07:44] Run scop standard workflow done
adata <- srt_to_adata(pancreas_sub)
#> ℹ [2025-09-20 14:07:45] Checking 2 packages in environment: scop_env
#> ℹ [2025-09-20 14:07:46] Retrieving package list for environment: scop_env
#> ℹ [2025-09-20 14:07:48] Found 205 packages installed
#> ✔ [2025-09-20 14:07:48] scanpy version: 1.11.3
#> ✔ [2025-09-20 14:07:48] numpy version: 1.26.4
#> ℹ [2025-09-20 14:07:48] Converting <Seurat> to <AnnData> ...
#> ! [2025-09-20 14:07:48] "misc" slot is not converted
#> ! [2025-09-20 14:07:48] "tools" slot is not converted
#> ✔ [2025-09-20 14:07:48] Convert <Seurat> object to <AnnData> object completed
adata
#> AnnData object with n_obs × n_vars = 1000 × 15998
#> obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'S_score', 'G2M_score', 'nCount_spliced', 'nFeature_spliced', 'nCount_unspliced', 'nFeature_unspliced', 'CellType', 'SubCellType', 'Phase', 'Standardpca_SNN_res.0.6', 'ident', 'Standardpcaclusters', 'Standardclusters'
#> var: 'features', 'highly_variable'
#> obsm: 'X_pca', 'X_X_pca', 'X_umap', 'X_X_umap', 'Standardpca', 'X_Standardpca', 'StandardpcaUMAP2D', 'X_StandardpcaUMAP2D', 'StandardpcaUMAP3D', 'X_StandardpcaUMAP3D', 'StandardUMAP2D', 'X_StandardUMAP2D', 'StandardUMAP3D', 'X_StandardUMAP3D'
#> layers: 'spliced', 'unspliced'
#> obsp: 'distances', 'connectivities', 'Standardpca_KNN', 'Standardpca_SNN'
if (FALSE) { # \dontrun{
# Or save as a h5ad/loom file
adata$write_h5ad(
"pancreas_sub.h5ad"
)
adata$write_loom(
"pancreas_sub.loom",
write_obsm_varm = TRUE
)
} # }