Skip to contents

Overview

The scop package provides a comprehensive set of tools for single-cell omics data processing and downstream analysis.

Introduction

The scop package includes the following facilities:

  • Integrated single-cell quality control methods.
  • Pipelines embedded with multiple methods for normalization, feature reduction, and cell population identification (standard Seurat workflow).
  • Pipelines embedded with multiple integration methods for scRNA-seq or scATAC-seq data, including Uncorrected, Seurat, scVI, MNN, fastMNN, Harmony, Scanorama, BBKNN, CSS, LIGER, Conos, ComBat.
  • Multiple single-cell downstream analyses such as identification of differential features, enrichment analysis, GSEA analysis, identification of dynamic features, PAGA, RNA velocity, Palantir, Monocle2, Monocle3, etc.
  • Multiple methods for automatic annotation of single-cell data and methods for projection between single-cell datasets.
  • High-quality data visualization methods.
  • Fast deployment of single-cell data into SCExplorer, a shiny app that provides an interactive visualization interface.

The functions in the scop package are all developed around the Seurat object and are compatible with other Seurat functions.

Credits

The scop package is developed based on the SCP package, making it compatible with Seurat V5 and adding support for single-cell omics data.

Installation

R version requirement

  • R >= 4.1.0

You can install the latest version of scop with pak from GitHub with:

if (!require("pak", quietly = TRUE)) {
  install.packages("pak")
}
pak::pak("mengxu98/scop")

Prepare python environment

To run functions such as RunPAGA or RunSCVELO, scop requires conda to create a separate python environment. The default environment name is "scop_env". You can specify the environment name for scop by setting options(scop_envname = "new_name").

Now, you can run PrepareEnv() to create the python environment for scop. If the conda binary is not found, it will automatically download and install miniconda.

scop::PrepareEnv()

To force scop to use a specific conda binary, it is recommended to set reticulate.conda_binary R option:

options(reticulate.conda_binary = "/path/to/conda")
scop::PrepareEnv()

If the download of miniconda or pip packages is slow, you can specify the miniconda repo and PyPI mirror according to your network region.

scop::PrepareEnv(
  miniconda_repo = "https://mirrors.bfsu.edu.cn/anaconda/miniconda",
  pip_options = "-i https://pypi.tuna.tsinghua.edu.cn/simple"
)

Available miniconda repositories:

Available PyPI mirrors:

Data exploration

The analysis is based on a subsetted version of mouse pancreas data.

library(scop)
data(pancreas_sub)
print(pancreas_sub)
#> An object of class Seurat
#> 47886 features across 1000 samples within 3 assays
#> Active assay: RNA (15962 features, 2000 variable features)
#>  3 layers present: counts, data, scale.data
#>  2 other assays present: spliced, unspliced
#>  2 dimensional reductions calculated: pca, umap
CellDimPlot(
  srt = pancreas_sub,
  group.by = c("CellType", "SubCellType"),
  reduction = "UMAP",
  theme_use = "theme_blank"
)

CellDimPlot(
  srt = pancreas_sub, group.by = "SubCellType", stat.by = "Phase",
  reduction = "UMAP", theme_use = "theme_blank"
)

FeatureDimPlot(
  srt = pancreas_sub,
  features = c("Sox9", "Neurog3", "Fev", "Rbp4"),
  reduction = "UMAP",
  theme_use = "theme_blank"
)

FeatureDimPlot(
  srt = pancreas_sub,
  features = c("Ins1", "Gcg", "Sst", "Ghrl"),
  compare_features = TRUE,
  label = TRUE,
  label_insitu = TRUE,
  reduction = "UMAP",
  theme_use = "theme_blank"
)

ht <- GroupHeatmap(
  srt = pancreas_sub,
  features = c(
    "Sox9", "Anxa2", # Ductal
    "Neurog3", "Hes6", # EPs
    "Fev", "Neurod1", # Pre-endocrine
    "Rbp4", "Pyy", # Endocrine
    "Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon
  ),
  group.by = c("CellType", "SubCellType"),
  heatmap_palette = "YlOrRd",
  cell_annotation = c("Phase", "G2M_score", "Cdh2"),
  cell_annotation_palette = c("Dark2", "Paired", "Paired"),
  show_row_names = TRUE, row_names_side = "left",
  add_dot = TRUE, add_reticle = TRUE
)
print(ht$plot)

CellQC

pancreas_sub <- RunCellQC(srt = pancreas_sub)
CellDimPlot(srt = pancreas_sub, group.by = "CellQC", reduction = "UMAP")

CellStatPlot(srt = pancreas_sub, stat.by = "CellQC", group.by = "CellType", label = TRUE)

CellStatPlot(
  srt = pancreas_sub,
  stat.by = c(
    "db_qc", "outlier_qc",
    "umi_qc", "gene_qc",
    "mito_qc", "ribo_qc",
    "ribo_mito_ratio_qc", "species_qc"
  ),
  plot_type = "upset",
  stat_level = "Fail"
)

Standard pipeline

pancreas_sub <- standard_scop(srt = pancreas_sub)
CellDimPlot(
  srt = pancreas_sub,
  group.by = c("CellType", "SubCellType"),
  reduction = "StandardUMAP2D",
  theme_use = "theme_blank"
)

CellDimPlot3D(
  srt = pancreas_sub,
  group.by = "SubCellType"
)
CellDimPlot3D
CellDimPlot3D
FeatureDimPlot3D(
  srt = pancreas_sub,
  features = c("Sox9", "Neurog3", "Fev", "Rbp4")
)
FeatureDimPlot3D
FeatureDimPlot3D

Integration pipeline

Example data for integration is a subsetted version of panc8(eight human pancreas datasets)

data("panc8_sub")
panc8_sub <- integration_scop(
  srt_merge = panc8_sub,
  batch = "tech",
  integration_method = "Seurat"
)
CellDimPlot(
  srt = panc8_sub,
  group.by = c("celltype", "tech"),
  reduction = "SeuratUMAP2D",
  title = "Seurat",
  theme_use = "theme_blank"
)

UMAP embeddings based on different integration methods in scop:

Integration-all
Integration-all

Cell projection between single-cell datasets

genenames <- make.unique(
  thisutils::capitalize(
    rownames(panc8_sub[["RNA"]]
  ),
  force_tolower = TRUE)
)
names(genenames) <- rownames(panc8_sub)
panc8_rename <- RenameFeatures(
  srt = panc8_sub,
  newnames = genenames,
  assays = "RNA"
)
srt_query <- RunKNNMap(
  srt_query = pancreas_sub,
  srt_ref = panc8_rename,
  ref_umap = "SeuratUMAP2D")
ProjectionPlot(
  srt_query = srt_query,
  srt_ref = panc8_rename,
  query_group = "SubCellType",
  ref_group = "celltype"
)

Cell annotation using bulk RNA-seq datasets

data("ref_scMCA")
pancreas_sub <- RunKNNPredict(
  srt_query = pancreas_sub,
  bulk_ref = ref_scMCA,
  filter_lowfreq = 20
)
CellDimPlot(
  srt = pancreas_sub,
  group.by = "KNNPredict_classification",
  reduction = "UMAP",
  label = TRUE
)

Cell annotation using single-cell datasets

pancreas_sub <- RunKNNPredict(
  srt_query = pancreas_sub,
  srt_ref = panc8_rename,
  ref_group = "celltype",
  filter_lowfreq = 20
)
CellDimPlot(
  srt = pancreas_sub,
  group.by = "KNNPredict_classification",
  reduction = "UMAP",
  label = TRUE
)

pancreas_sub <- RunKNNPredict(
  srt_query = pancreas_sub,
  srt_ref = panc8_rename,
  query_group = "SubCellType",
  ref_group = "celltype",
  return_full_distance_matrix = TRUE
)
CellDimPlot(
  srt = pancreas_sub,
  group.by = "KNNPredict_classification",
  reduction = "UMAP",
  label = TRUE
)

ht <- CellCorHeatmap(
  srt_query = pancreas_sub,
  srt_ref = panc8_rename,
  query_group = "SubCellType",
  ref_group = "celltype",
  nlabel = 3,
  label_by = "row",
  show_row_names = TRUE,
  show_column_names = TRUE
)
print(ht$plot)

PAGA analysis

PrepareEnv()
pancreas_sub <- RunPAGA(
  srt = pancreas_sub,
  group_by = "SubCellType",
  linear_reduction = "PCA",
  nonlinear_reduction = "UMAP"
)
PAGAPlot(
  srt = pancreas_sub,
  reduction = "UMAP",
  label = TRUE,
  label_insitu = TRUE,
  label_repel = TRUE
)

Velocity analysis

To estimate RNA velocity, both “spliced” and “unspliced” assays in Seurat object. You can generate these matrices using velocyto, bustools, or alevin.

pancreas_sub <- RunSCVELO(
  srt = pancreas_sub,
  group_by = "SubCellType",
  linear_reduction = "PCA",
  nonlinear_reduction = "UMAP"
)
VelocityPlot(
  srt = pancreas_sub,
  reduction = "UMAP",
  group_by = "SubCellType"
)

VelocityPlot(
  srt = pancreas_sub,
  reduction = "UMAP",
  plot_type = "stream"
)

Differential expression analysis

pancreas_sub <- RunDEtest(
  srt = pancreas_sub,
  group_by = "CellType",
  fc.threshold = 1,
  only.pos = FALSE
)
VolcanoPlot(
  srt = pancreas_sub,
  group_by = "CellType"
)

DEGs <- pancreas_sub@tools$DEtest_CellType$AllMarkers_wilcox
DEGs <- DEGs[with(DEGs, avg_log2FC > 1 & p_val_adj < 0.05), ]
# Annotate features with transcription factors and surface proteins
pancreas_sub <- AnnotateFeatures(
  pancreas_sub,
  species = "Mus_musculus",
  db = c("TF", "CSPA")
)
ht <- FeatureHeatmap(
  srt = pancreas_sub,
  group.by = "CellType",
  features = DEGs$gene,
  feature_split = DEGs$group1,
  species = "Mus_musculus",
  db = c("GO_BP", "KEGG", "WikiPathway"),
  anno_terms = TRUE,
  feature_annotation = c("TF", "CSPA"),
  feature_annotation_palcolor = list(
    c("gold", "steelblue"), c("forestgreen")
  ),
  height = 5, width = 4
)
print(ht$plot)

Enrichment analysis(over-representation)

pancreas_sub <- RunEnrichment(
  srt = pancreas_sub,
  group_by = "CellType",
  db = "GO_BP",
  species = "Mus_musculus",
  DE_threshold = "avg_log2FC > log2(1.5) & p_val_adj < 0.05"
)
EnrichmentPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = c("Ductal", "Endocrine"),
  plot_type = "bar"
)

EnrichmentPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = c("Ductal", "Endocrine"),
  plot_type = "wordcloud"
)

EnrichmentPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = c("Ductal", "Endocrine"),
  plot_type = "wordcloud",
  word_type = "feature"
)

EnrichmentPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = "Ductal",
  plot_type = "network"
)

To ensure that labels are visible, you can adjust the size of the viewer panel on Rstudio IDE.

EnrichmentPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = "Ductal",
  plot_type = "enrichmap"
)

EnrichmentPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  plot_type = "comparison"
)

Enrichment analysis(GSEA)

pancreas_sub <- RunGSEA(
  srt = pancreas_sub,
  group_by = "CellType",
  db = "GO_BP",
  species = "Mus_musculus",
  DE_threshold = "p_val_adj < 0.05"
)
GSEAPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = "Endocrine",
  id_use = "GO:0007186"
)

GSEAPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  group_use = "Endocrine",
  plot_type = "bar",
  direction = "both",
  topTerm = 20
)

GSEAPlot(
  srt = pancreas_sub,
  group_by = "CellType",
  plot_type = "comparison"
)

Trajectory inference

pancreas_sub <- RunSlingshot(
  srt = pancreas_sub,
  group.by = "SubCellType",
  reduction = "UMAP"
)

FeatureDimPlot(
  pancreas_sub,
  features = paste0("Lineage", 1:3),
  reduction = "UMAP",
  theme_use = "theme_blank"
)

CellDimPlot(
  pancreas_sub,
  group.by = "SubCellType",
  reduction = "UMAP",
  lineages = paste0("Lineage", 1:3),
  lineages_span = 0.1
)

Dynamic features

pancreas_sub <- RunDynamicFeatures(
  srt = pancreas_sub,
  lineages = c("Lineage1", "Lineage2"),
  n_candidates = 200
)
ht <- DynamicHeatmap(
  srt = pancreas_sub,
  lineages = c("Lineage1", "Lineage2"),
  use_fitted = TRUE,
  n_split = 6,
  reverse_ht = "Lineage1",
  species = "Mus_musculus",
  db = "GO_BP",
  anno_terms = TRUE,
  anno_keys = TRUE,
  anno_features = TRUE,
  heatmap_palette = "viridis",
  cell_annotation = "SubCellType",
  separate_annotation = list(
    "SubCellType", c("Nnat", "Irx1")
  ),
  separate_annotation_palette = c("Paired", "Set1"),
  feature_annotation = c("TF", "CSPA"),
  feature_annotation_palcolor = list(
    c("gold", "steelblue"), c("forestgreen")
  ),
  pseudotime_label = 25,
  seudotime_label_color = "red",
  height = 5,
  width = 2
)
print(ht$plot)

DynamicPlot(
  srt = pancreas_sub,
  lineages = c("Lineage1", "Lineage2"),
  group.by = "SubCellType",
  features = c(
    "Plk1", "Hes1", "Neurod2", "Ghrl", "Gcg", "Ins2"
  ),
  compare_lineages = TRUE,
  compare_features = FALSE
)

FeatureStatPlot(
  srt = pancreas_sub,
  group.by = "SubCellType",
  bg.by = "CellType",
  stat.by = c("Sox9", "Neurod2", "Isl1", "Rbp4"),
  add_box = TRUE,
  comparisons = list(
    c("Ductal", "Ngn3 low EP"),
    c("Ngn3 high EP", "Pre-endocrine"),
    c("Alpha", "Beta")
  )
)

Interactive data visualization with SCExplorer

PrepareSCExplorer(
  list(
    mouse_pancreas = pancreas_sub,
    human_pancreas = panc8_sub
  ),
  base_dir = "./SCExplorer"
)
app <- RunSCExplorer(base_dir = "./SCExplorer")
list.files("./SCExplorer") # This directory can be used as site directory for Shiny Server.

if (interactive()) {
  shiny::runApp(app)
}

SCExplorer1SCExplorer2

Other visualization examples

CellDimPlot

Example1CellStatPlotExample2FeatureStatPlotExample3GroupHeatmapExample3

You can also find more examples in the documentation of the function: integration_scop, RunKNNMap, RunMonocle3, RunPalantir, etc.