Skip to contents

The Conos integration function

Usage

Conos_integrate(
  srt_merge = NULL,
  batch = NULL,
  append = TRUE,
  srt_list = NULL,
  assay = NULL,
  do_normalization = NULL,
  normalization_method = "LogNormalize",
  do_HVF_finding = TRUE,
  HVF_source = "separate",
  HVF_method = "vst",
  nHVF = 2000,
  HVF_min_intersection = 1,
  HVF = NULL,
  do_scaling = TRUE,
  vars_to_regress = NULL,
  regression_model = "linear",
  linear_reduction = "pca",
  linear_reduction_dims = 50,
  linear_reduction_dims_use = NULL,
  linear_reduction_params = list(),
  force_linear_reduction = FALSE,
  nonlinear_reduction = "umap",
  nonlinear_reduction_dims = c(2, 3),
  nonlinear_reduction_params = list(),
  force_nonlinear_reduction = TRUE,
  cluster_algorithm = "louvain",
  cluster_resolution = 0.6,
  buildGraph_params = list(),
  num_threads = 2,
  verbose = TRUE,
  seed = 11
)

Arguments

srt_merge

A merged `Seurat` object that includes the batch information.

batch

A character string specifying the batch variable name.

append

Whether the integrated data will be appended to the original Seurat object (srt_merge). Default is TRUE.

srt_list

A list of Seurat objects to be checked and preprocessed.

assay

Which assay to use. If NULL, the default assay of the Seurat object will be used.

do_normalization

Whether data normalization should be performed. Default is TRUE.

normalization_method

The normalization method to be used. Possible values are "LogNormalize", "SCT", and "TFIDF". Default is "LogNormalize".

do_HVF_finding

Whether to perform high variable feature finding. If TRUE, the function will force to find the highly variable features (HVF) using the specified HVF method.

HVF_source

The source of highly variable features. Possible values are "global" and "separate". Default is "separate".

HVF_method

The method to use for finding highly variable features. Options are "vst", "mvp", or "disp". Default is "vst".

nHVF

The number of highly variable features to select. If NULL, all highly variable features will be used. Default is 2000.

HVF_min_intersection

The feature needs to be present in batches for a minimum number of times in order to be considered as highly variable. Default is 1.

HVF

A vector of feature names to use as highly variable features. If NULL, the function will use the highly variable features identified by the HVF method.

do_scaling

Whether to perform scaling. If TRUE, the function will force to scale the data using the Seurat::ScaleData function.

vars_to_regress

A vector of variable names to include as additional regression variables. Default is NULL.

regression_model

The regression model to use for scaling. Options are "linear", "poisson", or "negativebinomial". Default is "linear".

linear_reduction

The linear dimensionality reduction method to use. Options are "pca", "svd", "ica", "nmf", "mds", or "glmpca". Default is "pca".

linear_reduction_dims

The number of dimensions to keep after linear dimensionality reduction. Default is 50.

linear_reduction_dims_use

The dimensions to use for downstream analysis. If NULL, all dimensions will be used.

linear_reduction_params

A list of parameters to pass to the linear dimensionality reduction method.

force_linear_reduction

Whether to force linear dimensionality reduction even if the specified reduction is already present in the Seurat object.

nonlinear_reduction

The nonlinear dimensionality reduction method to use. Options are "umap", "umap-naive", "tsne", "dm", "phate", "pacmap", "trimap", "largevis", or "fr". Default is "umap".

nonlinear_reduction_dims

The number of dimensions to keep after nonlinear dimensionality reduction. If a vector is provided, different numbers of dimensions can be specified for each method. Default is c(2, 3).

nonlinear_reduction_params

A list of parameters to pass to the nonlinear dimensionality reduction method.

force_nonlinear_reduction

Whether to force nonlinear dimensionality reduction even if the specified reduction is already present in the Seurat object. Default is TRUE.

cluster_algorithm

The clustering algorithm to use. Options are "louvain", "slm", or "leiden". Default is "louvain".

cluster_resolution

The resolution parameter to use for clustering. Larger values result in fewer clusters. Default is 0.6.

buildGraph_params

A list of parameters for the buildGraph function. Default is `list()`.

num_threads

An integer setting the number of threads for Conos. Default is `2`.

verbose

Whether to print the message. Default is TRUE.

seed

Random seed for reproducibility. Default is 11.