Skip to contents

Reorder idents by the gene expression

Usage

srt_reorder(
  srt,
  features = NULL,
  reorder_by = NULL,
  layer = "data",
  assay = NULL,
  log = TRUE,
  distance_metric = "euclidean",
  verbose = TRUE
)

Arguments

srt

A Seurat object.

features

Features used to reorder idents.

reorder_by

Reorder groups instead of idents.

layer

Specific layer to get data from.

assay

Specific assay to get data from.

log

Whether log1p transformation needs to be applied. Default is TRUE.

distance_metric

Metric to compute distance. Default is "euclidean".

verbose

Whether to print the message. Default is TRUE.

Examples

data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
#>  [2025-09-20 14:07:14] Start standard scop workflow...
#>  [2025-09-20 14:07:14] Checking a list of <Seurat> object...
#> ! [2025-09-20 14:07:14] Data 1/1 of the `srt_list` is "unknown"
#>  [2025-09-20 14:07:14] Perform `NormalizeData()` with `normalization.method = 'LogNormalize'` on the data 1/1 of the `srt_list`...
#>  [2025-09-20 14:07:17] Perform `Seurat::FindVariableFeatures()` on the data 1/1 of the `srt_list`...
#>  [2025-09-20 14:07:17] Use the separate HVF from srt_list
#>  [2025-09-20 14:07:17] Number of available HVF: 2000
#>  [2025-09-20 14:07:17] Finished check
#>  [2025-09-20 14:07:18] Perform `Seurat::ScaleData()`
#> Warning: Different features in new layer data than already exists for scale.data
#>  [2025-09-20 14:07:18] Perform pca linear dimension reduction
#> StandardPC_ 1 
#> Positive:  Aplp1, Cpe, Gnas, Fam183b, Map1b, Hmgn3, Pcsk1n, Chga, Tuba1a, Bex2 
#> 	   Syt13, Isl1, 1700086L19Rik, Pax6, Chgb, Scgn, Rbp4, Scg3, Gch1, Camk2n1 
#> 	   Cryba2, Pcsk2, Pyy, Tspan7, Mafb, Hist3h2ba, Dbpht2, Abcc8, Rap1b, Slc38a5 
#> Negative:  Spp1, Anxa2, Sparc, Dbi, 1700011H14Rik, Wfdc2, Gsta3, Adamts1, Clu, Mgst1 
#> 	   Bicc1, Ldha, Vim, Cldn3, Cyr61, Rps2, Mt1, Ptn, Phgdh, Nudt19 
#> 	   Smtnl2, Smco4, Habp2, Mt2, Col18a1, Rpl12, Galk1, Cldn10, Acot1, Ccnd1 
#> StandardPC_ 2 
#> Positive:  Rbp4, Tagln2, Tuba1b, Fkbp2, Pyy, Pcsk2, Iapp, Tmem27, Meis2, Tubb4b 
#> 	   Pcsk1n, Dbpht2, Rap1b, Dynll1, Tubb2a, Sdf2l1, Scgn, 1700086L19Rik, Scg2, Abcc8 
#> 	   Atp1b1, Hspa5, Fam183b, Papss2, Slc38a5, Scg3, Mageh1, Tspan7, Ppp1r1a, Ociad2 
#> Negative:  Neurog3, Btbd17, Gadd45a, Ppp1r14a, Neurod2, Sox4, Smarcd2, Mdk, Pax4, Btg2 
#> 	   Sult2b1, Hes6, Grasp, Igfbpl1, Gpx2, Cbfa2t3, Foxa3, Shf, Mfng, Tmsb4x 
#> 	   Amotl2, Gdpd1, Cdc14b, Epb42, Rcor2, Cotl1, Upk3bl, Rbfox3, Cldn6, Cer1 
#> StandardPC_ 3 
#> Positive:  Nusap1, Top2a, Birc5, Aurkb, Cdca8, Pbk, Mki67, Tpx2, Plk1, Ccnb1 
#> 	   2810417H13Rik, Incenp, Cenpf, Ccna2, Prc1, Racgap1, Cdk1, Aurka, Cdca3, Hmmr 
#> 	   Spc24, Kif23, Sgol1, Cenpe, Cdc20, Hist1h1b, Cdca2, Mxd3, Kif22, Ska1 
#> Negative:  Anxa5, Pdzk1ip1, Acot1, Tpm1, Anxa2, Dcdc2a, Capg, Sparc, Ttr, Pamr1 
#> 	   Clu, Cxcl12, Ndrg2, Hnf1aos1, Gas6, Gsta3, Krt18, Ces1d, Atp1b1, Muc1 
#> 	   Hhex, Acadm, Spp1, Enpp2, Bcl2l14, Sat1, Smtnl2, 1700011H14Rik, Tgm2, Fam159a 
#> StandardPC_ 4 
#> Positive:  Glud1, Tm4sf4, Akr1c19, Cldn4, Runx1t1, Fev, Pou3f4, Gm43861, Pgrmc1, Arx 
#> 	   Cd200, Lrpprc, Hmgn3, Ppp1r14c, Pam, Etv1, Tsc22d1, Slc25a5, Akap17b, Pgf 
#> 	   Fam43a, Emb, Jun, Krt8, Dnajc12, Mid1ip1, Ids, Rgs17, Uchl1, Alcam 
#> Negative:  Ins2, Ins1, Ppp1r1a, Nnat, Calr, Sytl4, Sdf2l1, Iapp, Pdia6, Mapt 
#> 	   G6pc2, C2cd4b, Npy, Gng12, P2ry1, Ero1lb, Adra2a, Papss2, Arhgap36, Fam151a 
#> 	   Dlk1, Creld2, Gip, Tmem215, Gm27033, Cntfr, Prss53, C2cd4a, Lyve1, Ociad2 
#> StandardPC_ 5 
#> Positive:  Pdx1, Nkx6-1, Npepl1, Cldn4, Cryba2, Fev, Jun, Chgb, Gng12, Adra2a 
#> 	   Mnx1, Sytl4, Pdk3, Gm27033, Nnat, Chga, Ins2, 1110012L19Rik, Enho, Krt7 
#> 	   Mlxipl, Tmsb10, Flrt1, Pax4, Tubb3, Prrg2, Gars, Frzb, BC023829, Gm2694 
#> Negative:  Irx2, Irx1, Gcg, Ctxn2, Tmem27, Ctsz, Tmsb15l, Nap1l5, Pou6f2, Gria2 
#> 	   Ghrl, Peg10, Smarca1, Arx, Lrpap1, Rgs4, Ttr, Gast, Tmsb15b2, Serpina1b 
#> 	   Slc16a10, Wnk3, Ly6e, Auts2, Sct, Arg1, Dusp10, Sphkap, Dock11, Edn3 
#>  [2025-09-20 14:07:19] Perform `Seurat::FindClusters()` with louvain and `cluster_resolution` = 0.6
#>  [2025-09-20 14:07:19] Reorder clusters...
#> ! [2025-09-20 14:07:19] Using `Seurat::AggregateExpression()` to calculate pseudo-bulk data for <Assay5>
#>  [2025-09-20 14:07:19] Perform umap nonlinear dimension reduction
#>  [2025-09-20 14:07:19] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#>  [2025-09-20 14:07:19] UMAP will return its model
#>  [2025-09-20 14:07:24] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#>  [2025-09-20 14:07:24] UMAP will return its model
#>  [2025-09-20 14:07:28] Run scop standard workflow done
pancreas_sub <- srt_reorder(
  pancreas_sub,
  reorder_by = "SubCellType",
  layer = "data"
)
#> ! [2025-09-20 14:07:29] Using `Seurat::AggregateExpression()` to calculate pseudo-bulk data for <Assay5>