Annotate single cells using SingleR
Usage
RunSingleR(
srt_query,
srt_ref,
query_group = NULL,
ref_group = NULL,
query_assay = "RNA",
ref_assay = "RNA",
genes = "de",
de.method = "wilcox",
sd.thresh = 1,
de.n = NULL,
aggr.ref = FALSE,
aggr.args = list(),
quantile = 0.8,
fine.tune = TRUE,
tune.thresh = 0.05,
prune = TRUE,
cores = 1,
verbose = TRUE
)Arguments
- srt_query
An object of class Seurat to be annotated with cell types.
- srt_ref
An object of class Seurat storing the reference cells.
- query_group
A character vector specifying the column name in the
srt_querymetadata that represents the cell grouping.- ref_group
A character vector specifying the column name in the
srt_refmetadata that represents the cell grouping.- query_assay
A character vector specifying the assay to be used for the query data. Default is the default assay of the
srt_queryobject.- ref_assay
A character vector specifying the assay to be used for the reference data. Default is the default assay of the
srt_refobject.- genes
"genes"parameter in SingleR::SingleR function.- de.method
"de.method"parameter in SingleR::SingleR function.- sd.thresh
Deprecated and ignored.
- de.n
An integer scalar specifying the number of DE genes to use when
genes="de". Ifde.method="classic", defaults to500 * (2/3) ^ log2(N)whereNis the number of unique labels. Otherwise, defaults to 10. Ignored ifgenesis a list of markers/DE genes.- aggr.ref, aggr.args
Arguments controlling the aggregation of the references prior to annotation, see
trainSingleR.- quantile
"quantile" parameter in SingleR::SingleR function.
- fine.tune
"fine.tune"parameter in SingleR::SingleR function.- tune.thresh
"tune.thresh"parameter in SingleR::SingleR function.- prune
"prune"parameter in SingleR::SingleR function.- cores
The number of cores to use for parallelization with foreach::foreach. Default is
1.- verbose
Whether to print the message. Default is
TRUE.
Examples
data(panc8_sub)
# Simply convert genes from human to mouse and preprocess the data
genenames <- make.unique(
thisutils::capitalize(
rownames(panc8_sub),
force_tolower = TRUE
)
)
names(genenames) <- rownames(panc8_sub)
panc8_sub <- RenameFeatures(
panc8_sub,
newnames = genenames
)
panc8_sub <- CheckDataMerge(
panc8_sub,
batch = "tech"
)[["srt_merge"]]
# Annotation
data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
#> StandardPC_ 1
#> Positive: Aplp1, Cpe, Gnas, Fam183b, Map1b, Hmgn3, Pcsk1n, Chga, Tuba1a, Bex2
#> Syt13, Isl1, 1700086L19Rik, Pax6, Chgb, Scgn, Rbp4, Scg3, Gch1, Camk2n1
#> Cryba2, Pcsk2, Pyy, Tspan7, Mafb, Hist3h2ba, Dbpht2, Abcc8, Rap1b, Slc38a5
#> Negative: Spp1, Anxa2, Sparc, Dbi, 1700011H14Rik, Wfdc2, Gsta3, Adamts1, Clu, Mgst1
#> Bicc1, Ldha, Vim, Cldn3, Cyr61, Rps2, Mt1, Ptn, Phgdh, Nudt19
#> Smtnl2, Smco4, Habp2, Mt2, Col18a1, Rpl12, Galk1, Cldn10, Acot1, Ccnd1
#> StandardPC_ 2
#> Positive: Rbp4, Tagln2, Tuba1b, Fkbp2, Pyy, Pcsk2, Iapp, Tmem27, Meis2, Tubb4b
#> Pcsk1n, Dbpht2, Rap1b, Dynll1, Tubb2a, Sdf2l1, Scgn, 1700086L19Rik, Scg2, Abcc8
#> Atp1b1, Hspa5, Fam183b, Papss2, Slc38a5, Scg3, Mageh1, Tspan7, Ppp1r1a, Ociad2
#> Negative: Neurog3, Btbd17, Gadd45a, Ppp1r14a, Neurod2, Sox4, Smarcd2, Mdk, Pax4, Btg2
#> Sult2b1, Hes6, Grasp, Igfbpl1, Gpx2, Cbfa2t3, Foxa3, Shf, Mfng, Tmsb4x
#> Amotl2, Gdpd1, Cdc14b, Epb42, Rcor2, Cotl1, Upk3bl, Rbfox3, Cldn6, Cer1
#> StandardPC_ 3
#> Positive: Nusap1, Top2a, Birc5, Aurkb, Cdca8, Pbk, Mki67, Tpx2, Plk1, Ccnb1
#> 2810417H13Rik, Incenp, Cenpf, Ccna2, Prc1, Racgap1, Cdk1, Aurka, Cdca3, Hmmr
#> Spc24, Kif23, Sgol1, Cenpe, Cdc20, Hist1h1b, Cdca2, Mxd3, Kif22, Ska1
#> Negative: Anxa5, Pdzk1ip1, Acot1, Tpm1, Anxa2, Dcdc2a, Capg, Sparc, Ttr, Pamr1
#> Clu, Cxcl12, Ndrg2, Hnf1aos1, Gas6, Gsta3, Krt18, Ces1d, Atp1b1, Muc1
#> Hhex, Acadm, Spp1, Enpp2, Bcl2l14, Sat1, Smtnl2, 1700011H14Rik, Tgm2, Fam159a
#> StandardPC_ 4
#> Positive: Glud1, Tm4sf4, Akr1c19, Cldn4, Runx1t1, Fev, Pou3f4, Gm43861, Pgrmc1, Arx
#> Cd200, Lrpprc, Hmgn3, Ppp1r14c, Pam, Etv1, Tsc22d1, Slc25a5, Akap17b, Pgf
#> Fam43a, Emb, Jun, Krt8, Dnajc12, Mid1ip1, Ids, Rgs17, Uchl1, Alcam
#> Negative: Ins2, Ins1, Ppp1r1a, Nnat, Calr, Sytl4, Sdf2l1, Iapp, Pdia6, Mapt
#> G6pc2, C2cd4b, Npy, Gng12, P2ry1, Ero1lb, Adra2a, Papss2, Arhgap36, Fam151a
#> Dlk1, Creld2, Gip, Tmem215, Gm27033, Cntfr, Prss53, C2cd4a, Lyve1, Ociad2
#> StandardPC_ 5
#> Positive: Pdx1, Nkx6-1, Npepl1, Cldn4, Cryba2, Fev, Jun, Chgb, Gng12, Adra2a
#> Mnx1, Sytl4, Pdk3, Gm27033, Nnat, Chga, Ins2, 1110012L19Rik, Enho, Krt7
#> Mlxipl, Tmsb10, Flrt1, Pax4, Tubb3, Prrg2, Gars, Frzb, BC023829, Gm2694
#> Negative: Irx2, Irx1, Gcg, Ctxn2, Tmem27, Ctsz, Tmsb15l, Nap1l5, Pou6f2, Gria2
#> Ghrl, Peg10, Smarca1, Arx, Lrpap1, Rgs4, Ttr, Gast, Tmsb15b2, Serpina1b
#> Slc16a10, Wnk3, Ly6e, Auts2, Sct, Arg1, Dusp10, Sphkap, Dock11, Edn3
pancreas_sub <- RunSingleR(
srt_query = pancreas_sub,
srt_ref = panc8_sub,
query_group = "Standardpca_SNN_res.0.6",
ref_group = "celltype"
)
#>
#> → Will install 8 packages.
#> → All 8 packages (0 B) are cached.
#> + DelayedMatrixStats 1.32.0 [bld]
#> + Rigraphlib 1.2.0 [bld][cmp]
#> + SingleR 2.12.0 [bld][cmp]
#> + biocmake 1.2.0 [bld]
#> + celldex 1.20.0 [bld]
#> + dir.expiry 1.18.0 [bld]
#> + scrapper 1.4.0 [bld][cmp]
#> + sparseMatrixStats 1.22.0 [bld][cmp]
#> ✔ All system requirements are already installed.
#>
#> ℹ No downloads are needed, 8 pkgs are cached
#> ✔ Got biocmake 1.2.0 (source) (229.12 kB)
#> ✔ Got dir.expiry 1.18.0 (source) (308.96 kB)
#> ✔ Got DelayedMatrixStats 1.32.0 (source) (274.35 kB)
#> ✔ Got celldex 1.20.0 (source) (412.25 kB)
#> ✔ Got SingleR 2.12.0 (source) (695.24 kB)
#> ✔ Got scrapper 1.4.0 (source) (958.15 kB)
#> ✔ Got sparseMatrixStats 1.22.0 (source) (706.40 kB)
#> ✔ Got Rigraphlib 1.2.0 (source) (4.53 MB)
#> ℹ Installing system requirements
#> ℹ Executing `sudo sh -c apt-get -y update`
#> Get:1 file:/etc/apt/apt-mirrors.txt Mirrorlist [144 B]
#> Hit:2 http://azure.archive.ubuntu.com/ubuntu noble InRelease
#> Hit:6 https://packages.microsoft.com/repos/azure-cli noble InRelease
#> Hit:3 http://azure.archive.ubuntu.com/ubuntu noble-updates InRelease
#> Hit:4 http://azure.archive.ubuntu.com/ubuntu noble-backports InRelease
#> Hit:5 http://azure.archive.ubuntu.com/ubuntu noble-security InRelease
#> Hit:7 https://packages.microsoft.com/ubuntu/24.04/prod noble InRelease
#> Reading package lists...
#> ℹ Executing `sudo sh -c apt-get -y install make libcurl4-openssl-dev libnode-dev libxml2-dev pandoc libssl-dev libpng-dev libicu-dev`
#> Reading package lists...
#> Building dependency tree...
#> Reading state information...
#> make is already the newest version (4.3-4.1build2).
#> libcurl4-openssl-dev is already the newest version (8.5.0-2ubuntu10.6).
#> libnode-dev is already the newest version (18.19.1+dfsg-6ubuntu5).
#> libxml2-dev is already the newest version (2.9.14+dfsg-1.3ubuntu3.6).
#> pandoc is already the newest version (3.1.3+ds-2).
#> libssl-dev is already the newest version (3.0.13-0ubuntu3.6).
#> libpng-dev is already the newest version (1.6.43-5build1).
#> libicu-dev is already the newest version (74.2-1ubuntu3.1).
#> 0 upgraded, 0 newly installed, 0 to remove and 49 not upgraded.
#> ℹ Building dir.expiry 1.18.0
#> ℹ Building sparseMatrixStats 1.22.0
#> ✔ Built dir.expiry 1.18.0 (1.1s)
#> ✔ Installed dir.expiry 1.18.0 (27ms)
#> ℹ Building biocmake 1.2.0
#> ✔ Built biocmake 1.2.0 (1.2s)
#> ✔ Installed biocmake 1.2.0 (1s)
#> ℹ Building Rigraphlib 1.2.0
#> ✔ Built sparseMatrixStats 1.22.0 (18.6s)
#> ✔ Installed sparseMatrixStats 1.22.0 (1.1s)
#> ℹ Building DelayedMatrixStats 1.32.0
#> ✔ Built DelayedMatrixStats 1.32.0 (11.2s)
#> ✔ Installed DelayedMatrixStats 1.32.0 (30ms)
#> ℹ Building SingleR 2.12.0
#> ℹ Building celldex 1.20.0
#> ✔ Built celldex 1.20.0 (23.3s)
#> ✔ Installed celldex 1.20.0 (42ms)
#> ✔ Built SingleR 2.12.0 (47.2s)
#> ✔ Installed SingleR 2.12.0 (95ms)
#> ✔ Built Rigraphlib 1.2.0 (2m 18.9s)
#> ✔ Installed Rigraphlib 1.2.0 (249ms)
#> ℹ Building scrapper 1.4.0
#> ✔ Built scrapper 1.4.0 (4m 10.4s)
#> ✔ Installed scrapper 1.4.0 (697ms)
#> ✔ 1 pkg + 158 deps: kept 150, added 8, dld 8 (8.12 MB) [6m 40.7s]
CellDimPlot(
pancreas_sub,
group.by = c("singler_annotation", "CellType")
)
pancreas_sub <- RunSingleR(
srt_query = pancreas_sub,
srt_ref = panc8_sub,
query_group = NULL,
ref_group = "celltype"
)
CellDimPlot(
pancreas_sub,
group.by = c("singler_annotation", "CellType")
)