Run UMAP (Uniform Manifold Approximation and Projection)
Usage
RunUMAP2(object, ...)
# S3 method for class 'Seurat'
RunUMAP2(
object,
reduction = "pca",
dims = NULL,
features = NULL,
neighbor = NULL,
graph = NULL,
assay = NULL,
layer = "data",
umap.method = "uwot",
reduction.model = NULL,
n_threads = NULL,
return.model = FALSE,
n.neighbors = 30L,
n.components = 2L,
metric = "cosine",
n.epochs = 200L,
spread = 1,
min.dist = 0.3,
set.op.mix.ratio = 1,
local.connectivity = 1L,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
learning.rate = 1,
repulsion.strength = 1,
reduction.name = "umap",
reduction.key = "UMAP_",
verbose = TRUE,
seed.use = 11,
...
)
# Default S3 method
RunUMAP2(
object,
assay = NULL,
umap.method = "uwot",
reduction.model = NULL,
n_threads = NULL,
return.model = FALSE,
n.neighbors = 30L,
n.components = 2L,
metric = "cosine",
n.epochs = 200L,
spread = 1,
min.dist = 0.3,
set.op.mix.ratio = 1,
local.connectivity = 1L,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
learning.rate = 1,
repulsion.strength = 1,
reduction.key = "UMAP_",
verbose = TRUE,
seed.use = 11L,
...
)Arguments
- object
An object. This can be a Seurat object, a matrix-like object, a Neighbor object, or a Graph object.
- ...
Additional arguments to be passed to UMAP.
- reduction
The reduction to be used. Default is
"pca".- dims
The dimensions to be used. Default is
NULL.- features
The features to be used. Default is
NULL.- neighbor
The name of the Neighbor object to be used. Default is
NULL.- graph
The name of the Graph object to be used. Default is
NULL.- assay
The assay to be used. Default is
NULL.- layer
The layer to be used. Default is
"data".- umap.method
The UMAP method to be used. Options are
"naive"and"uwot". Default is"uwot".- reduction.model
A DimReduc object containing a pre-trained UMAP model. Default is
NULL.- n_threads
Num of threads used.
- return.model
Whether to return the UMAP model. Default is
FALSE.- n.neighbors
A number of nearest neighbors to be used. Default is
30.- n.components
A number of UMAP components. Default is
2.- metric
The metric or a function to be used for distance calculations. When using a string, available metrics are:
euclidean,manhattan. Other available generalized metrics are: cosine, pearson, pearson2. Note the triangle inequality may not be satisfied by some generalized metrics, hence knn search may not be optimal. When using metric.function as a function, the signature must be function(matrix, origin, target) and should compute a distance between the origin column and the target columns. Default is"cosine".- n.epochs
A number of iterations performed during layout optimization for UMAP. Default is
200.- spread
The spread parameter for UMAP, used during automatic estimation of a/b parameters. Default is
1.- min.dist
The minimum distance between UMAP embeddings, determines how close points appear in the final layout. Default is
0.3.- set.op.mix.ratio
Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between
0.0and1.0; a value of1.0will use a pure fuzzy union, while0.0will use a pure fuzzy intersection.- local.connectivity
The local connectivity, used during construction of fuzzy simplicial set. Default is
1.- negative.sample.rate
The negative sample rate for UMAP optimization. Determines how many non-neighbor points are used per point and per iteration during layout optimization. Default is
5.- a
The parameter a for UMAP optimization. Contributes to gradient calculations during layout optimization. When left at NA, a suitable value will be estimated automatically. Default is
NULL.- b
The parameter b for UMAP optimization. Details see parameter
a.- learning.rate
The initial value of "learning rate" of layout optimization. Default is
1.- repulsion.strength
A numeric value determines, together with alpha, the learning rate of layout optimization. Default is
1.- reduction.name
The name of the reduction to be stored in the Seurat object. Default is
"umap".- reduction.key
The prefix for the column names of the UMAP embeddings. Default is
"UMAP_".- verbose
Whether to print the message. Default is
TRUE.- seed.use
The random seed to be used. Default is
11.
Examples
data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
#> ℹ [2025-11-13 12:42:56] Start standard scop workflow...
#> ℹ [2025-11-13 12:42:57] Checking a list of <Seurat> object...
#> ! [2025-11-13 12:42:57] Data 1/1 of the `srt_list` is "unknown"
#> ℹ [2025-11-13 12:42:57] Perform `NormalizeData()` with `normalization.method = 'LogNormalize'` on the data 1/1 of the `srt_list`...
#> ℹ [2025-11-13 12:42:59] Perform `Seurat::FindVariableFeatures()` on the data 1/1 of the `srt_list`...
#> ℹ [2025-11-13 12:43:00] Use the separate HVF from srt_list
#> ℹ [2025-11-13 12:43:00] Number of available HVF: 2000
#> ℹ [2025-11-13 12:43:00] Finished check
#> ℹ [2025-11-13 12:43:00] Perform `Seurat::ScaleData()`
#> ℹ [2025-11-13 12:43:00] Perform pca linear dimension reduction
#> StandardPC_ 1
#> Positive: Aplp1, Cpe, Gnas, Fam183b, Map1b, Hmgn3, Pcsk1n, Chga, Tuba1a, Bex2
#> Syt13, Isl1, 1700086L19Rik, Pax6, Chgb, Scgn, Rbp4, Scg3, Gch1, Camk2n1
#> Cryba2, Pcsk2, Pyy, Tspan7, Mafb, Hist3h2ba, Dbpht2, Abcc8, Rap1b, Slc38a5
#> Negative: Spp1, Anxa2, Sparc, Dbi, 1700011H14Rik, Wfdc2, Gsta3, Adamts1, Clu, Mgst1
#> Bicc1, Ldha, Vim, Cldn3, Cyr61, Rps2, Mt1, Ptn, Phgdh, Nudt19
#> Smtnl2, Smco4, Habp2, Mt2, Col18a1, Rpl12, Galk1, Cldn10, Acot1, Ccnd1
#> StandardPC_ 2
#> Positive: Rbp4, Tagln2, Tuba1b, Fkbp2, Pyy, Pcsk2, Iapp, Tmem27, Meis2, Tubb4b
#> Pcsk1n, Dbpht2, Rap1b, Dynll1, Tubb2a, Sdf2l1, Scgn, 1700086L19Rik, Scg2, Abcc8
#> Atp1b1, Hspa5, Fam183b, Papss2, Slc38a5, Scg3, Mageh1, Tspan7, Ppp1r1a, Ociad2
#> Negative: Neurog3, Btbd17, Gadd45a, Ppp1r14a, Neurod2, Sox4, Smarcd2, Mdk, Pax4, Btg2
#> Sult2b1, Hes6, Grasp, Igfbpl1, Gpx2, Cbfa2t3, Foxa3, Shf, Mfng, Tmsb4x
#> Amotl2, Gdpd1, Cdc14b, Epb42, Rcor2, Cotl1, Upk3bl, Rbfox3, Cldn6, Cer1
#> StandardPC_ 3
#> Positive: Nusap1, Top2a, Birc5, Aurkb, Cdca8, Pbk, Mki67, Tpx2, Plk1, Ccnb1
#> 2810417H13Rik, Incenp, Cenpf, Ccna2, Prc1, Racgap1, Cdk1, Aurka, Cdca3, Hmmr
#> Spc24, Kif23, Sgol1, Cenpe, Cdc20, Hist1h1b, Cdca2, Mxd3, Kif22, Ska1
#> Negative: Anxa5, Pdzk1ip1, Acot1, Tpm1, Anxa2, Dcdc2a, Capg, Sparc, Ttr, Pamr1
#> Clu, Cxcl12, Ndrg2, Hnf1aos1, Gas6, Gsta3, Krt18, Ces1d, Atp1b1, Muc1
#> Hhex, Acadm, Spp1, Enpp2, Bcl2l14, Sat1, Smtnl2, 1700011H14Rik, Tgm2, Fam159a
#> StandardPC_ 4
#> Positive: Glud1, Tm4sf4, Akr1c19, Cldn4, Runx1t1, Fev, Pou3f4, Gm43861, Pgrmc1, Arx
#> Cd200, Lrpprc, Hmgn3, Ppp1r14c, Pam, Etv1, Tsc22d1, Slc25a5, Akap17b, Pgf
#> Fam43a, Emb, Jun, Krt8, Dnajc12, Mid1ip1, Ids, Rgs17, Uchl1, Alcam
#> Negative: Ins2, Ins1, Ppp1r1a, Nnat, Calr, Sytl4, Sdf2l1, Iapp, Pdia6, Mapt
#> G6pc2, C2cd4b, Npy, Gng12, P2ry1, Ero1lb, Adra2a, Papss2, Arhgap36, Fam151a
#> Dlk1, Creld2, Gip, Tmem215, Gm27033, Cntfr, Prss53, C2cd4a, Lyve1, Ociad2
#> StandardPC_ 5
#> Positive: Pdx1, Nkx6-1, Npepl1, Cldn4, Cryba2, Fev, Jun, Chgb, Gng12, Adra2a
#> Mnx1, Sytl4, Pdk3, Gm27033, Nnat, Chga, Ins2, 1110012L19Rik, Enho, Krt7
#> Mlxipl, Tmsb10, Flrt1, Pax4, Tubb3, Prrg2, Gars, Frzb, BC023829, Gm2694
#> Negative: Irx2, Irx1, Gcg, Ctxn2, Tmem27, Ctsz, Tmsb15l, Nap1l5, Pou6f2, Gria2
#> Ghrl, Peg10, Smarca1, Arx, Lrpap1, Rgs4, Ttr, Gast, Tmsb15b2, Serpina1b
#> Slc16a10, Wnk3, Ly6e, Auts2, Sct, Arg1, Dusp10, Sphkap, Dock11, Edn3
#> ℹ [2025-11-13 12:43:01] Perform `Seurat::FindClusters()` with louvain and `cluster_resolution` = 0.6
#> ℹ [2025-11-13 12:43:02] Reorder clusters...
#> ℹ [2025-11-13 12:43:02] Perform umap nonlinear dimension reduction
#> ℹ [2025-11-13 12:43:02] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#> ℹ [2025-11-13 12:43:02] UMAP will return its model
#> ℹ [2025-11-13 12:43:06] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#> ℹ [2025-11-13 12:43:06] UMAP will return its model
#> ✔ [2025-11-13 12:43:11] Run scop standard workflow done
pancreas_sub <- RunUMAP2(
object = pancreas_sub,
features = SeuratObject::VariableFeatures(pancreas_sub)
)
CellDimPlot(
pancreas_sub,
group.by = "CellType",
reduction = "umap"
)