scVI_integrate
Usage
scVI_integrate(
srt_merge = NULL,
batch = NULL,
append = TRUE,
srt_list = NULL,
assay = NULL,
do_normalization = NULL,
normalization_method = "LogNormalize",
do_HVF_finding = TRUE,
HVF_source = "separate",
HVF_method = "vst",
nHVF = 2000,
HVF_min_intersection = 1,
HVF = NULL,
scVI_dims_use = NULL,
nonlinear_reduction = "umap",
nonlinear_reduction_dims = c(2, 3),
nonlinear_reduction_params = list(),
force_nonlinear_reduction = TRUE,
neighbor_metric = "euclidean",
neighbor_k = 20L,
cluster_algorithm = "louvain",
cluster_resolution = 0.6,
model = "SCVI",
SCVI_params = list(),
PEAKVI_params = list(),
num_threads = 1,
verbose = TRUE,
seed = 11
)
Arguments
- srt_merge
A merged `Seurat` object that includes the batch information.
- batch
A character string specifying the batch variable name.
- append
The integrated data will be appended to the original Seurat object (srt_merge). Default is
TRUE
.- srt_list
A list of
Seurat
objects to be checked and preprocessed.- assay
The name of the assay to be used for downstream analysis.
- do_normalization
Whether data normalization should be performed. Default is
TRUE
.- normalization_method
The normalization method to be used. Possible values are
"LogNormalize"
,"SCT"
, and"TFIDF"
. Default is"LogNormalize"
.- do_HVF_finding
Whether highly variable feature (HVF) finding should be performed. Default is
TRUE
.- HVF_source
The source of highly variable features. Possible values are
"global"
and"separate"
. Default is"separate"
.- HVF_method
The method for selecting highly variable features. Default is
"vst"
.- nHVF
The number of highly variable features to select. Default is
2000
.- HVF_min_intersection
The feature needs to be present in batches for a minimum number of times in order to be considered as highly variable. The default value is
1
.- HVF
A vector of highly variable features. Default is
NULL
.- scVI_dims_use
A vector specifying the dimensions returned by scVI that will be utilized for downstream cell cluster finding and non-linear reduction. If set to NULL, all the returned dimensions will be used by default.
- nonlinear_reduction
The nonlinear dimensionality reduction method to use. Options are
"umap"
,"umap-naive"
,"tsne"
,"dm"
,"phate"
,"pacmap"
,"trimap"
,"largevis"
, or"fr"
. Default is"umap"
.- nonlinear_reduction_dims
The number of dimensions to keep after nonlinear dimensionality reduction. If a vector is provided, different numbers of dimensions can be specified for each method. Default is
c(2, 3)
.- nonlinear_reduction_params
A list of parameters to pass to the nonlinear dimensionality reduction method.
- force_nonlinear_reduction
Whether to force nonlinear dimensionality reduction even if the specified reduction is already present in the Seurat object. Default is
TRUE
.- neighbor_metric
The distance metric to use for finding neighbors. Options are
"euclidean"
,"cosine"
,"manhattan"
, or"hamming"
. Default is"euclidean"
.- neighbor_k
The number of nearest neighbors to use for finding neighbors. Default is
20
.- cluster_algorithm
The clustering algorithm to use. Options are
"louvain"
,"slm"
, or"leiden"
. Default is"louvain"
.- cluster_resolution
The resolution parameter to use for clustering. Larger values result in fewer clusters. Default is
0.6
.- model
A string indicating the scVI model to be used. Options are "SCVI" and "PEAKVI". Default is "SCVI".
- SCVI_params
A list of parameters for the SCVI model. Default is an empty list.
- PEAKVI_params
A list of parameters for the PEAKVI model. Default is an empty list.
- num_threads
An integer setting the number of threads for scVI. Default is 8.
- verbose
Whether to print the message. Default is
TRUE
.- seed
An integer specifying the random seed for reproducibility. Default is
11
.