This function performs cell scoring on a Seurat object. It calculates scores for a given set of features and adds the scores as metadata to the Seurat object.
Usage
CellScoring(
srt,
features = NULL,
layer = "data",
assay = NULL,
split.by = NULL,
IDtype = "symbol",
species = "Homo_sapiens",
db = "GO_BP",
termnames = NULL,
db_update = FALSE,
db_version = "latest",
convert_species = TRUE,
Ensembl_version = NULL,
mirror = NULL,
minGSSize = 10,
maxGSSize = 500,
method = "Seurat",
classification = TRUE,
name = "",
new_assay = FALSE,
seed = 11,
cores = 1,
verbose = TRUE,
...
)
Arguments
- srt
A Seurat object.
- features
A named list of feature lists for scoring. If NULL,
db
will be used to create features sets.- layer
The layer of the Seurat object to use for scoring. Defaults to "data".
- assay
The assay of the Seurat object to use for scoring. Defaults to NULL, in which case the default assay of the object is used.
- split.by
A cell metadata variable used for splitting the Seurat object into subsets and performing scoring on each subset. Defaults to NULL.
- IDtype
A character vector specifying the type of gene IDs in the
srt
object orgeneID
argument. This argument is used to convert the gene IDs to a different type ifIDtype
is different fromresult_IDtype
.- species
A character vector specifying the species for which the analysis is performed.
- db
A character vector specifying the name of the database to be used for enrichment analysis.
- termnames
A vector of term names to be used from the database. Defaults to NULL, in which case all features from the database are used.
- db_update
Whether the gene annotation databases should be forcefully updated. If set to FALSE, the function will attempt to load the cached databases instead. Default is FALSE.
- db_version
A character vector specifying the version of the database to be used. This argument is ignored if
db_update
isTRUE
. Default is "latest".- convert_species
Whether to use a species-converted database when the annotation is missing for the specified species. The default value is TRUE.
- Ensembl_version
Ensembl database version. If NULL, use the current release version.
- mirror
Specify an Ensembl mirror to connect to. The valid options here are
"www"
,"uswest"
,"useast"
,"asia"
.- minGSSize
The minimum size of a gene set to be considered in the enrichment analysis.
- maxGSSize
The maximum size of a gene set to be considered in the enrichment analysis.
- method
The method to use for scoring. Can be "Seurat", "AUCell", or "UCell". Defaults to "Seurat".
- classification
Whether to perform classification based on the scores. Defaults to TRUE.
- name
The name of the assay to store the scores in. Only used if new_assay is TRUE. Defaults to an empty string.
- new_assay
Whether to create a new assay for storing the scores. Defaults to FALSE.
- seed
The random seed for reproducibility. Defaults to 11.
- cores
The number of cores to use for parallelization with foreach::foreach. Default is
1
.- verbose
Whether to print the message. Default is
TRUE
.- ...
Additional arguments to be passed to the scoring methods.
Examples
data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
#> ℹ [2025-09-20 13:07:35] Start standard scop workflow...
#> ℹ [2025-09-20 13:07:36] Checking a list of <Seurat> object...
#> ! [2025-09-20 13:07:36] Data 1/1 of the `srt_list` is "unknown"
#> ℹ [2025-09-20 13:07:36] Perform `NormalizeData()` with `normalization.method = 'LogNormalize'` on the data 1/1 of the `srt_list`...
#> ℹ [2025-09-20 13:07:37] Perform `Seurat::FindVariableFeatures()` on the data 1/1 of the `srt_list`...
#> ℹ [2025-09-20 13:07:38] Use the separate HVF from srt_list
#> ℹ [2025-09-20 13:07:38] Number of available HVF: 2000
#> ℹ [2025-09-20 13:07:38] Finished check
#> ℹ [2025-09-20 13:07:39] Perform `Seurat::ScaleData()`
#> Warning: Different features in new layer data than already exists for scale.data
#> ℹ [2025-09-20 13:07:39] Perform pca linear dimension reduction
#> StandardPC_ 1
#> Positive: Aplp1, Cpe, Gnas, Fam183b, Map1b, Hmgn3, Pcsk1n, Chga, Tuba1a, Bex2
#> Syt13, Isl1, 1700086L19Rik, Pax6, Chgb, Scgn, Rbp4, Scg3, Gch1, Camk2n1
#> Cryba2, Pcsk2, Pyy, Tspan7, Mafb, Hist3h2ba, Dbpht2, Abcc8, Rap1b, Slc38a5
#> Negative: Spp1, Anxa2, Sparc, Dbi, 1700011H14Rik, Wfdc2, Gsta3, Adamts1, Clu, Mgst1
#> Bicc1, Ldha, Vim, Cldn3, Cyr61, Rps2, Mt1, Ptn, Phgdh, Nudt19
#> Smtnl2, Smco4, Habp2, Mt2, Col18a1, Rpl12, Galk1, Cldn10, Acot1, Ccnd1
#> StandardPC_ 2
#> Positive: Rbp4, Tagln2, Tuba1b, Fkbp2, Pyy, Pcsk2, Iapp, Tmem27, Meis2, Tubb4b
#> Pcsk1n, Dbpht2, Rap1b, Dynll1, Tubb2a, Sdf2l1, Scgn, 1700086L19Rik, Scg2, Abcc8
#> Atp1b1, Hspa5, Fam183b, Papss2, Slc38a5, Scg3, Mageh1, Tspan7, Ppp1r1a, Ociad2
#> Negative: Neurog3, Btbd17, Gadd45a, Ppp1r14a, Neurod2, Sox4, Smarcd2, Mdk, Pax4, Btg2
#> Sult2b1, Hes6, Grasp, Igfbpl1, Gpx2, Cbfa2t3, Foxa3, Shf, Mfng, Tmsb4x
#> Amotl2, Gdpd1, Cdc14b, Epb42, Rcor2, Cotl1, Upk3bl, Rbfox3, Cldn6, Cer1
#> StandardPC_ 3
#> Positive: Nusap1, Top2a, Birc5, Aurkb, Cdca8, Pbk, Mki67, Tpx2, Plk1, Ccnb1
#> 2810417H13Rik, Incenp, Cenpf, Ccna2, Prc1, Racgap1, Cdk1, Aurka, Cdca3, Hmmr
#> Spc24, Kif23, Sgol1, Cenpe, Cdc20, Hist1h1b, Cdca2, Mxd3, Kif22, Ska1
#> Negative: Anxa5, Pdzk1ip1, Acot1, Tpm1, Anxa2, Dcdc2a, Capg, Sparc, Ttr, Pamr1
#> Clu, Cxcl12, Ndrg2, Hnf1aos1, Gas6, Gsta3, Krt18, Ces1d, Atp1b1, Muc1
#> Hhex, Acadm, Spp1, Enpp2, Bcl2l14, Sat1, Smtnl2, 1700011H14Rik, Tgm2, Fam159a
#> StandardPC_ 4
#> Positive: Glud1, Tm4sf4, Akr1c19, Cldn4, Runx1t1, Fev, Pou3f4, Gm43861, Pgrmc1, Arx
#> Cd200, Lrpprc, Hmgn3, Ppp1r14c, Pam, Etv1, Tsc22d1, Slc25a5, Akap17b, Pgf
#> Fam43a, Emb, Jun, Krt8, Dnajc12, Mid1ip1, Ids, Rgs17, Uchl1, Alcam
#> Negative: Ins2, Ins1, Ppp1r1a, Nnat, Calr, Sytl4, Sdf2l1, Iapp, Pdia6, Mapt
#> G6pc2, C2cd4b, Npy, Gng12, P2ry1, Ero1lb, Adra2a, Papss2, Arhgap36, Fam151a
#> Dlk1, Creld2, Gip, Tmem215, Gm27033, Cntfr, Prss53, C2cd4a, Lyve1, Ociad2
#> StandardPC_ 5
#> Positive: Pdx1, Nkx6-1, Npepl1, Cldn4, Cryba2, Fev, Jun, Chgb, Gng12, Adra2a
#> Mnx1, Sytl4, Pdk3, Gm27033, Nnat, Chga, Ins2, 1110012L19Rik, Enho, Krt7
#> Mlxipl, Tmsb10, Flrt1, Pax4, Tubb3, Prrg2, Gars, Frzb, BC023829, Gm2694
#> Negative: Irx2, Irx1, Gcg, Ctxn2, Tmem27, Ctsz, Tmsb15l, Nap1l5, Pou6f2, Gria2
#> Ghrl, Peg10, Smarca1, Arx, Lrpap1, Rgs4, Ttr, Gast, Tmsb15b2, Serpina1b
#> Slc16a10, Wnk3, Ly6e, Auts2, Sct, Arg1, Dusp10, Sphkap, Dock11, Edn3
#> ℹ [2025-09-20 13:07:40] Perform `Seurat::FindClusters()` with louvain and `cluster_resolution` = 0.6
#> ℹ [2025-09-20 13:07:40] Reorder clusters...
#> ! [2025-09-20 13:07:40] Using `Seurat::AggregateExpression()` to calculate pseudo-bulk data for <Assay5>
#> ℹ [2025-09-20 13:07:40] Perform umap nonlinear dimension reduction
#> ℹ [2025-09-20 13:07:40] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#> ℹ [2025-09-20 13:07:40] UMAP will return its model
#> ℹ [2025-09-20 13:07:43] Non-linear dimensionality reduction (umap) using (Standardpca) dims (1-50) as input
#> ℹ [2025-09-20 13:07:43] UMAP will return its model
#> ✔ [2025-09-20 13:07:46] Run scop standard workflow done
features_all <- rownames(pancreas_sub)
pancreas_sub <- CellScoring(
pancreas_sub,
features = list(
A = features_all[1:100],
B = features_all[101:200]
),
method = "Seurat",
name = "test"
)
#> ℹ [2025-09-20 13:07:46] Start cell scoring
#> ℹ [2025-09-20 13:07:47] Data type is log-normalized
#> ℹ [2025-09-20 13:07:47] Number of feature lists to be scored: 2
#> ℹ [2025-09-20 13:07:47] Using 1 core
#> ⠙ [2025-09-20 13:07:47] Running [1/2] ETA: 0s
#> ✔ [2025-09-20 13:07:47] Completed 2 tasks in 131ms
#>
#> ℹ [2025-09-20 13:07:47] Building results
#> ✔ [2025-09-20 13:07:47] Cell scoring completed
CellDimPlot(pancreas_sub, "test_classification")
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
FeatureDimPlot(pancreas_sub, "test_A")
if (FALSE) { # \dontrun{
data(panc8_sub)
panc8_sub <- integration_scop(
panc8_sub,
batch = "tech",
integration_method = "Seurat"
)
CellDimPlot(
panc8_sub,
group.by = c("tech", "celltype")
)
panc8_sub <- CellScoring(
panc8_sub,
layer = "data",
assay = "RNA",
db = "GO_BP",
species = "Homo_sapiens",
minGSSize = 10,
maxGSSize = 100,
method = "Seurat",
name = "GO",
new_assay = TRUE
)
panc8_sub <- integration_scop(
panc8_sub,
assay = "GO",
batch = "tech",
integration_method = "Seurat"
)
CellDimPlot(
panc8_sub,
group.by = c("tech", "celltype")
)
pancreas_sub <- CellScoring(
pancreas_sub,
layer = "data",
assay = "RNA",
db = "GO_BP",
species = "Mus_musculus",
termnames = panc8_sub[["GO"]]@meta.features[, "termnames"],
method = "Seurat",
name = "GO",
new_assay = TRUE
)
pancreas_sub <- standard_scop(
pancreas_sub,
assay = "GO"
)
CellDimPlot(pancreas_sub, "SubCellType")
pancreas_sub[["tech"]] <- "Mouse"
panc_merge <- integration_scop(
srt_list = list(panc8_sub, pancreas_sub),
assay = "GO",
batch = "tech", integration_method = "Seurat"
)
CellDimPlot(
srt = panc_merge,
group.by = c("tech", "celltype", "SubCellType", "Phase")
)
genenames <- make.unique(
thisutils::capitalize(
rownames(panc8_sub[["RNA"]])
),
force_tolower = TRUE
)
names(genenames) <- rownames(panc8_sub)
panc8_sub <- RenameFeatures(
panc8_sub,
newnames = genenames,
assay = "RNA"
)
head(rownames(panc8_sub))
panc_merge <- integration_scop(
srt_list = list(panc8_sub, pancreas_sub),
assay = "RNA",
batch = "tech", integration_method = "Seurat"
)
CellDimPlot(
srt = panc_merge,
group.by = c("tech", "celltype", "SubCellType", "Phase")
)
} # }