Runs the Monocle2 algorithm on a Seurat object.
Usage
RunMonocle2(
srt,
assay = NULL,
layer = "counts",
expressionFamily = "negbinomial.size",
features = NULL,
feature_type = "HVF",
disp_filter = "mean_expression >= 0.1 & dispersion_empirical >= 1 * dispersion_fit",
max_components = 2,
reduction_method = "DDRTree",
norm_method = "log",
residualModelFormulaStr = NULL,
pseudo_expr = 1,
root_state = NULL,
seed = 11
)
Arguments
- srt
A Seurat object.
- assay
The name of the assay in the Seurat object to use for analysis. Defaults to NULL, in which case the default assay of the object is used.
- layer
The layer in the Seurat object to use for analysis. Default is "counts".
- expressionFamily
The distribution family to use for modeling gene expression. Default is "negbinomial.size".
- features
A vector of gene names or indices specifying the features to use in the analysis. Defaults to NULL, in which case features were determined by
feature_type
.- feature_type
The type of features to use in the analysis. Possible values are "HVF" for highly variable features or "Disp" for features selected based on dispersion. Default is "HVF".
- disp_filter
A string specifying the filter to use when
feature_type
is "Disp". Default is "mean_expression >= 0.1 & dispersion_empirical >= 1 * dispersion_fit".- max_components
The maximum number of dimensions to use for dimensionality reduction. Default is 2.
- reduction_method
The dimensionality reduction method to use. Possible values are "DDRTree" and "UMAP". Default is "DDRTree".
- norm_method
The normalization method to use. Possible values are "log" and "none". Default is "log".
- residualModelFormulaStr
A model formula specifying the effects to subtract. Default is NULL.
- pseudo_expr
Amount to increase expression values before dimensionality reduction. Default is 1.
- root_state
The state to use as the root of the trajectory. If NULL, will prompt for user input.
- seed
An integer specifying the random seed to use. Default is 11.
Examples
if (interactive()) {
data("pancreas_sub")
pancreas_sub <- RunMonocle2(pancreas_sub)
names(pancreas_sub@tools$Monocle2)
trajectory <- pancreas_sub@tools$Monocle2$trajectory
CellDimPlot(
pancreas_sub,
group.by = "Monocle2_State",
reduction = "DDRTree",
label = TRUE,
theme_use = "theme_blank"
) +
trajectory
CellDimPlot(
pancreas_sub,
group.by = "Monocle2_State",
reduction = "UMAP",
label = TRUE,
theme_use = "theme_blank"
)
FeatureDimPlot(
pancreas_sub,
features = "Monocle2_Pseudotime",
reduction = "UMAP",
theme_use = "theme_blank"
)
pancreas_sub <- RunMonocle2(
srt = pancreas_sub,
feature_type = "Disp",
disp_filter = "mean_expression >= 0.01 & dispersion_empirical >= 1 * dispersion_fit"
)
trajectory <- pancreas_sub@tools$Monocle2$trajectory
CellDimPlot(
pancreas_sub,
group.by = "Monocle2_State",
reduction = "DDRTree",
label = TRUE,
theme_use = "theme_blank"
) +
trajectory
CellDimPlot(
pancreas_sub,
group.by = "Monocle2_State",
reduction = "UMAP",
label = TRUE,
theme_use = "theme_blank"
)
FeatureDimPlot(
pancreas_sub,
features = "Monocle2_Pseudotime",
reduction = "UMAP",
theme_use = "theme_blank"
)
}