Run Monocle2 analysis
Usage
RunMonocle2(
srt,
assay = NULL,
layer = "counts",
group.by = NULL,
expressionFamily = "negbinomial.size",
features = NULL,
feature_type = "HVF",
disp_filter = "mean_expression >= 0.1 & dispersion_empirical >= 1 * dispersion_fit",
max_components = 2,
reduction_method = "DDRTree",
norm_method = "log",
residualModelFormulaStr = NULL,
pseudo_expr = 1,
root_state = NULL,
seed = 11,
verbose = TRUE
)Arguments
- srt
A Seurat object.
- assay
Which assay to use. If
NULL, the default assay of the Seurat object will be used.- layer
Which layer to use. Default is
"counts".- group.by
Name of one or more meta.data columns to group (color) cells by.
- expressionFamily
The distribution family to use for modeling gene expression. Default is
"negbinomial.size".- features
A character vector of features to use. Defaults to NULL, in which case features were determined by
feature_type.- feature_type
The type of features to use in the analysis. Possible values are "HVF" for highly variable features or "Disp" for features selected based on dispersion. Default is
"HVF".- disp_filter
A string specifying the filter to use when
feature_typeis "Disp". Default is"mean_expression >= 0.1 & dispersion_empirical >= 1 * dispersion_fit".- max_components
The maximum number of dimensions to use for dimensionality reduction. Default is
2.- reduction_method
The dimensionality reduction method to use. Possible values are
"DDRTree","ICA","tSNE","SimplePPT","L1-graph","SGL-tree". Default is"DDRTree".- norm_method
The normalization method to use. Possible values are
"log"and"none". Default is"log".- residualModelFormulaStr
A model formula specifying the effects to subtract. Default is NULL.
- pseudo_expr
Amount to increase expression values before dimensionality reduction. Default is 1.
- root_state
The state to use as the root of the trajectory. If NULL, will prompt for user input.
- seed
Random seed for reproducibility. Default is
11.- verbose
Whether to print the message. Default is
TRUE.
Examples
if (interactive()) {
data(pancreas_sub)
pancreas_sub <- standard_scop(pancreas_sub)
pancreas_sub <- RunMonocle2(
pancreas_sub,
group.by = "SubCellType"
)
names(pancreas_sub@tools$Monocle2)
trajectory <- pancreas_sub@tools$Monocle2$trajectory
p1 <- CellDimPlot(
pancreas_sub,
group.by = "Monocle2_State",
reduction = "DDRTree",
label = TRUE,
theme_use = "theme_blank"
)
p1
p1 + trajectory
FeatureDimPlot(
pancreas_sub,
features = "Monocle2_Pseudotime",
reduction = "UMAP",
theme_use = "theme_blank"
)
pancreas_sub <- RunMonocle2(
pancreas_sub,
feature_type = "Disp",
disp_filter = "mean_expression >= 0.01 & dispersion_empirical >= 1 * dispersion_fit"
)
trajectory <- pancreas_sub@tools$Monocle2$trajectory
p2 <- CellDimPlot(
pancreas_sub,
group.by = "Monocle2_State",
reduction = "DDRTree",
label = TRUE,
theme_use = "theme_blank"
)
p2
p2 + trajectory
FeatureDimPlot(
pancreas_sub,
features = "Monocle2_Pseudotime",
reduction = "UMAP",
theme_use = "theme_blank"
)
}