Run GLMPCA (generalized version of principal components analysis)
Source:R/RunGLMPCA.R
RunGLMPCA.Rd
Run GLMPCA (generalized version of principal components analysis)
Usage
RunGLMPCA(object, ...)
# S3 method for class 'Seurat'
RunGLMPCA(
object,
assay = NULL,
layer = "counts",
features = NULL,
L = 5,
fam = c("poi", "nb", "nb2", "binom", "mult", "bern"),
rev.gmlpca = FALSE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.name = "glmpca",
reduction.key = "GLMPC_",
verbose = TRUE,
seed.use = 11,
...
)
# S3 method for class 'Assay'
RunGLMPCA(
object,
assay = NULL,
layer = "counts",
features = NULL,
L = 5,
fam = c("poi", "nb", "nb2", "binom", "mult", "bern"),
rev.gmlpca = FALSE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.key = "GLMPC_",
verbose = TRUE,
seed.use = 11,
...
)
# S3 method for class 'Assay5'
RunGLMPCA(
object,
assay = NULL,
layer = "counts",
features = NULL,
L = 5,
fam = c("poi", "nb", "nb2", "binom", "mult", "bern"),
rev.gmlpca = FALSE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.key = "GLMPC_",
verbose = TRUE,
seed.use = 11,
...
)
# Default S3 method
RunGLMPCA(
object,
assay = NULL,
layer = "counts",
features = NULL,
L = 5,
fam = c("poi", "nb", "nb2", "binom", "mult", "bern"),
rev.gmlpca = FALSE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.key = "GLMPC_",
verbose = TRUE,
seed.use = 11,
...
)
Arguments
- object
An object. This can be a Seurat object, an assay object, or a matrix-like object.
- ...
Additional arguments to be passed to the glmpca::glmpca function.
- assay
The assay to be used for the analysis. Default is
NULL
.- layer
The layer to be used for the analysis. Default is
"counts"
.- features
The features to be used for the analysis. Default is
NULL
, which uses all variable features.- L
The number of components to be computed. Default is
5
.- fam
The family of the generalized linear model to be used. Currently supported values are
"poi"
,"nb"
,"nb2"
,"binom"
,"mult"
, and"bern"
. Default is"poi"
.- rev.gmlpca
Whether to perform reverse GLMPCA (i.e., transpose the input matrix) before running the analysis. Default is
FALSE
.- ndims.print
The dimensions (number of components) to print in the output. Default is
1:5
.- nfeatures.print
The number of features to print in the output. Default is
30
.- reduction.name
The name of the reduction to be stored in the Seurat object. Default is
"glmpca"
.- reduction.key
The prefix for the column names of the basis vectors. Default is
"GLMPC_"
.- verbose
Whether to print the message. Default is
TRUE
.- seed.use
The random seed to be used. Default is
11
.
Examples
pancreas_sub <- RunGLMPCA(object = pancreas_sub)
#> Error in apply(X = data.use[features, ], MARGIN = 1, FUN = stats::var): dim(X) must have a positive length
CellDimPlot(
pancreas_sub,
group.by = "CellType",
reduction = "glmpca"
)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.