Single-cell reference mapping with Symphony method
Usage
RunSymphonyMap(
srt_query,
srt_ref,
query_assay = NULL,
ref_assay = srt_ref[[ref_pca]]@assay.used,
ref_pca = NULL,
ref_harmony = NULL,
ref_umap = NULL,
ref_group = NULL,
projection_method = c("model", "knn"),
nn_method = NULL,
k = 30,
distance_metric = "cosine",
vote_fun = "mean"
)Arguments
- srt_query
A Seurat object storing the query cells.
- srt_ref
A Seurat object storing the reference cells.
- query_assay
A character string specifying the assay name for the query cells. If not provided, the default assay for the query object will be used.
- ref_assay
A character string specifying the assay name for the reference cells. If not provided, the default assay for the reference object will be used.
- ref_pca
The PCA reduction in the reference object to use for calculating the distance metric.
- ref_harmony
The Harmony reduction in the reference object to use for calculating the distance metric.
- ref_umap
A character string specifying the name of the UMAP reduction in the reference object. If not provided, the first UMAP reduction found in the reference object will be used.
- ref_group
A character string specifying a metadata column name in the reference object to use for grouping.
- projection_method
A character string specifying the projection method to use. Options are "model" and "knn". If "model" is selected, the function will try to use a pre-trained UMAP model in the reference object for projection. If "knn" is selected, the function will directly find the nearest neighbors using the distance metric.
- nn_method
A character string specifying the nearest neighbor search method to use. Options are "raw", "annoy", and "rann". If "raw" is selected, the function will use the brute-force method to find the nearest neighbors. If "annoy" is selected, the function will use the Annoy library for approximate nearest neighbor search. If "rann" is selected, the function will use the RANN library for approximate nearest neighbor search. If not provided, the function will choose the search method based on the size of the query and reference datasets.
- k
A number of nearest neighbors to find for each cell in the query object.
- distance_metric
A character string specifying the distance metric to use for calculating the pairwise distances between cells. Options include: "pearson", "spearman", "cosine", "correlation", "jaccard", "ejaccard", "dice", "edice", "hamman", "simple matching", and "faith". Additional distance metrics can also be used, such as "euclidean", "manhattan", "hamming", etc.
- vote_fun
A character string specifying the function to be used for aggregating the nearest neighbors in the reference object. Options are "mean", "median", "sum", "min", "max", "sd", "var", etc. If not provided, the default is "mean".
Examples
data(panc8_sub)
panc8_sub <- standard_scop(panc8_sub)
#> StandardPC_ 1
#> Positive: CHGA, PCSK1N, G6PC2, PCSK1, IAPP, ARFGEF3, CRYBA2, PRUNE2, CDKN1C, SORL1
#> EDN3, CADM1, FXYD2, ELMO1, HADH, PAPPA2, GRIA3, RBP4, DLK1, ANXA6
#> HMGN2, GNAZ, AMPD2, IGF2, ROBO2, DNAJA4, PDK4, SEPT3, CD99L2, SYT17
#> Negative: IFITM3, ZFP36L1, SOX4, ANXA4, KRT7, TPM1, PMEPA1, SERPING1, TM4SF1, CD44
#> CDC42EP1, TMSB10, NFIB, SAT1, SDC4, SPTBN1, LCN2, KRT18, PDZK1IP1, MSN
#> SMAD3, CLDN10, CFTR, NOTCH2, KRT19, CTSH, SERPINA5, FLRT2, C3, EPS8
#> StandardPC_ 2
#> Positive: SPARC, COL4A1, COL15A1, COL1A2, COL3A1, PXDN, PDGFRB, COL5A1, BGN, COL5A2
#> COL1A1, LAMA4, TIMP3, COL6A2, IGFBP4, AEBP1, SFRP2, THBS2, FBN1, COL6A1
#> CDH11, VCAN, SERPINE1, WNT5A, FN1, TPM2, FMOD, MMP2, SNAI1, DCN
#> Negative: KRT8, SPINK1, PRSS1, ELF3, GATM, MUC1, KRT18, CPA2, CTRB1, SDC4
#> PRSS3, CLDN4, LCN2, ANPEP, CPA1, PDZK1IP1, PLA2G1B, CTRC, CPB1, PNLIP
#> KLK1, CELA2A, CELA3A, KRT7, GSTA1, CD44, PNLIPRP1, PNLIPRP2, CELA3B, GSTA2
#> StandardPC_ 3
#> Positive: FTO, SORL1, TBC1D24, CASR, PCYOX1, UTRN, ADH5, ENPP5, RNF14, PHKB
#> MAP1A, C2CD5, TTC17, RAB22A, PRR14L, AP3B1, MTR, HERC1, EXPH5, SMCHD1
#> ROBO1, ABHD10, PRUNE2, SPEN, BTBD3, IBTK, ARFGEF2, TSC1, PARP4, RMND5A
#> Negative: HSPB1, CELA3A, CELA3B, CLPS, CTRB1, SYCN, CELA2A, EIF4A1, VIM, PNLIPRP1
#> PLA2G1B, KLK1, CPA1, CTRC, DDIT4, PLTP, BGN, DYNLL2, ANGPTL4, COL6A2
#> IFITM1, IGFBP4, IGFBP2, TMSB10, PRSS1, CTRL, PDGFRB, CPA2, PRSS3, PXDN
#> StandardPC_ 4
#> Positive: CPA2, PNLIP, PRSS1, CTRC, CPA1, CPB1, PLA2G1B, PNLIPRP2, PRSS3, BCAT1
#> CEL, KLK1, CELA2A, CTRB1, PNLIPRP1, SPINK1, GSTA2, MGST1, CELA3A, LDHB
#> ALB, CTRL, CELA3B, CLPS, ALDOB, REG3G, FAM129A, GSTA1, SYCN, CBS
#> Negative: CFTR, MMP7, KRT19, SERPINA5, TINAGL1, AQP1, SPP1, SERPING1, PMEPA1, KRT23
#> ALDH1A3, TSPAN8, PROM1, IGFBP7, VCAM1, LGALS4, ONECUT2, TRPV6, CCL2, ANXA3
#> TNFAIP2, CTSH, SDC1, SLC3A1, CLDN10, ANXA9, CCND1, KRT80, VNN1, PDGFD
#> StandardPC_ 5
#> Positive: COL5A1, COL1A2, COL1A1, SFRP2, COL5A2, COL3A1, VCAN, FN1, PDGFRB, THBS2
#> FMOD, BGN, ANTXR1, MXRA8, COL6A1, AEBP1, TPM2, CDH11, DCN, ISLR
#> TGFB3, COL6A2, LTBP2, DDR2, EDNRA, ANO1, LTBP1, GFPT2, WNT5A, HEYL
#> Negative: CD93, PLVAP, PODXL, ACVRL1, ESAM, S1PR1, CXCR4, ECSCR, DYSF, CALCRL
#> ADGRF5, STC1, CD34, AFAP1L1, IFI27, SH3BP5, ACKR3, ANGPT2, DLL4, MMRN2
#> MCAM, PNP, IL3RA, SPARCL1, TCF4, FAM198B, RAPGEF5, ARHGAP31, P2RY6, F2RL3
srt_ref <- panc8_sub[, panc8_sub$tech != "fluidigmc1"]
srt_query <- panc8_sub[, panc8_sub$tech == "fluidigmc1"]
srt_ref <- integration_scop(
srt_ref,
batch = "tech",
integration_method = "Harmony"
)
CellDimPlot(srt_ref, group.by = c("celltype", "tech"))
# Projection
srt_query <- RunSymphonyMap(
srt_query = srt_query,
srt_ref = srt_ref,
ref_pca = "Harmonypca",
ref_harmony = "Harmony",
ref_umap = "HarmonyUMAP2D"
)
#>
#> → Will install 1 package.
#> → The package (0 B) is cached.
#> + symphony 0.1.2 [bld][cmp] (GitHub: 91e2ca1)
#> ✔ All system requirements are already installed.
#>
#> ℹ No downloads are needed, 1 pkg is cached
#> ✔ Got symphony 0.1.2 (source) (4.19 MB)
#> ℹ Installing system requirements
#> ℹ Executing `sudo sh -c apt-get -y update`
#> Get:1 file:/etc/apt/apt-mirrors.txt Mirrorlist [144 B]
#> Hit:2 http://azure.archive.ubuntu.com/ubuntu noble InRelease
#> Hit:3 http://azure.archive.ubuntu.com/ubuntu noble-updates InRelease
#> Hit:4 http://azure.archive.ubuntu.com/ubuntu noble-backports InRelease
#> Hit:5 http://azure.archive.ubuntu.com/ubuntu noble-security InRelease
#> Hit:6 https://packages.microsoft.com/repos/azure-cli noble InRelease
#> Hit:7 https://packages.microsoft.com/ubuntu/24.04/prod noble InRelease
#> Reading package lists...
#> ℹ Executing `sudo sh -c apt-get -y install libcairo2-dev make pandoc libpng-dev libfreetype6-dev libjpeg-dev libtiff-dev libwebp-dev libicu-dev libfontconfig1-dev libfribidi-dev libharfbuzz-dev`
#> Reading package lists...
#> Building dependency tree...
#> Reading state information...
#> libcairo2-dev is already the newest version (1.18.0-3build1).
#> make is already the newest version (4.3-4.1build2).
#> pandoc is already the newest version (3.1.3+ds-2).
#> libpng-dev is already the newest version (1.6.43-5build1).
#> libfreetype-dev is already the newest version (2.13.2+dfsg-1build3).
#> libjpeg-dev is already the newest version (8c-2ubuntu11).
#> libtiff-dev is already the newest version (4.5.1+git230720-4ubuntu2.4).
#> libwebp-dev is already the newest version (1.3.2-0.4build3).
#> libicu-dev is already the newest version (74.2-1ubuntu3.1).
#> libfontconfig1-dev is already the newest version (2.15.0-1.1ubuntu2).
#> libfribidi-dev is already the newest version (1.0.13-3build1).
#> libharfbuzz-dev is already the newest version (8.3.0-2build2).
#> 0 upgraded, 0 newly installed, 0 to remove and 49 not upgraded.
#> ℹ Packaging symphony 0.1.2
#> ✔ Packaged symphony 0.1.2 (702ms)
#> ℹ Building symphony 0.1.2
#> ✔ Built symphony 0.1.2 (20.2s)
#> ✔ Installed symphony 0.1.2 (github::immunogenomics/symphony@91e2ca1) (48ms)
#> ✔ 1 pkg + 89 deps: kept 89, added 1, dld 1 (NA B) [27.5s]
ProjectionPlot(
srt_query = srt_query,
srt_ref = srt_ref,
query_group = "celltype",
ref_group = "celltype"
)
#> Scale for x is already present.
#> Adding another scale for x, which will replace the existing scale.
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.