Inferring cell-specific gene regulatory network

inferCSN-package

inferCSN: infer cell-type-specific gene regulatory network

inferCSN_logo()

inferCSN logo

inferCSN()

inferring cell-type specific gene regulatory network

Network visualization

plot_dynamic_networks()

Plot dynamic networks

plot_static_networks()

Plot dynamic networks

plot_contrast_networks()

Plot contrast networks

plot_network_heatmap()

Plot network heatmap

plot_detail_network()

Plot the dynamic differential network but colored by communities and optionally faded by igraph::betweenness

plot_diffnet_detail()

Plot the dynamic differential network but colored by communities and optionally faded by betweenness

plot_dyn_diffnet()

Plot the dynamic differential network

plot_dynamic_network()

quick plot of dynamic networks

plot_gof()

Plot goodness-of-fit metrics.

plot_heatmap_by_treatment()

Useful plotting function to plot heatmap with pre-split matrix

plot_module_metrics()

Plot module metrics number of genes, number of peaks and number of TFs per gene.

plot_network_graph()

Plot network graph.

plot_targets_and_regulators()

Updated plot of top regulators given targets in dynamic networks based on a weight column. Top regulators computed for each epoch, but maintained in plot across epochs if present in epoch subnetwork.

plot_targets_with_top_regulators_detail()

quick plot of top regulators given targets in dynamic networks based on reconstruction weight, colored by expression and interaction type

plot_tf_network()

Plot sub-network centered around one TF.

plot_top_features()

quick plot of top regulators in dynamic networks

heatmap_by_treatment_group()

Useful plotting function to plot heatmap of module expression across time with pre-split matrix

hm_dyn()

plots results of findDynGenes

hm_dyn_clust()

plots results of findDynGenes

hm_dyn_epoch()

heatmap

Plotting functions

plot_coefficient()

Plot coefficients

plot_coefficients()

Plot coefficients for multiple targets

plot_edges_comparison()

Network Edge Comparison Visualization

plot_embedding()

Plot embedding

plot_histogram()

Plot histogram

plot_scatter()

Plot expression data in a scatter plot

Plotting theme

no_legend()

Removes legend from plot.

no_margin()

Removes margins from plot.

no_x_text()

Removes x axis text.

no_y_text()

Removes y axis text.

Network evaluation

calculate_metrics()

Calculate Network Prediction Performance Metrics

calculate_accuracy()

Calculate Accuracy

calculate_auc()

Calculate AUC Metrics

calculate_auroc()

Calculate AUROC Metric

calculate_auprc()

Calculate AUPRC Metric

calculate_precision()

Calculate Precision Metric

calculate_recall()

Calculate Recall Metric

calculate_f1()

Calculate F1 Score

calculate_si()

Calculate Set Intersection

calculate_ji()

Calculate Jaccard Index

calculate_degree_distribution()

calculate_degree_distribution

JI_across_topregs()

Computes Jaccard similarity between top regulators in two sets of networks across a range of top X regulators

Sparse regression model

single_network()

Construct network for single target gene

fit_srm()

Sparse regression model

fit_srm2()

Fit a sparse regression model

sparse_regression()

Fit a sparse regression model

fit_cvglmnet()

Cross-validation for regularized generalized linear models

fit_cvsrm()

Cross-validation for sparse regression models

fit_glm()

Fit generalized linear model

fit_glmnet()

Fit regularized generalized linear model

fit_xgb()

Fit a gradient boosting regression model with XGBoost

fit_model()

Fit model

fit_models()

Fit models for gene expression

fit_susie()

Fit a SuSiE regression model

format_coefs()

Format network coefficients

vector functions

infer_vector()

infer VECTOR

vector_auto_center()

Title

vector_build_grid()

Title

vector_build_net()

Title

vector_build_value()

Title

vector_draw_arrow()

Title

vector_grid_value()

Title

vector_rank_pca()

rank umap

RNA data processing

aggregate_assay()

Aggregate Seurat assay over groups

aggregate_matrix()

Aggregate matrix over groups

expression_ksmooth()

expression_ksmooth

Peak data processing

find_peaks_near_genes()

Find peaks or regions near gene body or TSS

Dynamic object

dynamic_genes()

Get dynamic genes

dynamic_genes_new()

find genes expressed dynamically

findDynGenes()

find genes expressed dynamically

get_pseudotime()

Get pseudotime information

get_embedding()

Get dimensional information

compileDynGenes()

compileDynGenes

Network processing

export_csn()

Export network from CSN object

get_attribute()

Get any attribute from a CSNObject object

metrics()

Get metrics

print(<Network>) print(<Modules>) print(<Regions>)

Print Network objects

simulate_sparse_matrix()

Generate a simulated sparse matrix for single-cell data testing

subsampling()

Subsampling function

weight_sift()

Weight sift

network_sift()

Sifting network

add_interaction_type()

add_interaction_type

add_type()

Adds interaction type to dynamic differential network

DefaultNetwork()

Get active network

GetAssay()

Get seurat assay

GetAssaySummary()

Get summary of seurat assay

GetNetwork()

Get network

LayerData()

Get layer data from CSNObject

NetworkGraph()

Get network graph

NetworkModules()

Get network modules

NetworkParams()

Get network parameters

NetworkRegions()

Get network regions

NetworkTFs()

Get network TFs

Params()

Get GRN inference parameters

VariableFeatures()

Get variable features from CSNObject

define_epochs()

Define epochs

define_epochs_new()

Define epochs

density_points()

density_points

diffnet_community_detection()

Perform community detection on a dynamic network

dynamic_windowing()

dynamic_windowing

dynamic_difference_network()

Compute a dynamic difference network

dynamic_shortest_path()

Function to return shortest path from 1 regulator to 1 target in a dynamic network

dynamic_shortest_path_multiple()

Function to return shortest path from multiple TFs to multiple targets in a dynamic network

edge_uniqueness()

Function to compute edge differences between networks

epochGRN()

Divides grnDF into epochs, filters interactions between genes not in same or consecutive epochs

compile_epochs()

compile_epochs

get_network_graph()

Compute network graph embedding using UMAP.

get_tf_network()

Get sub-network centered around one TF.

assign_epochs_simple()

Assigns genes to epochs just based on which mean is maximal

assign_epochs()

Assigns genes to epochs

assign_epochs_new1()

Assigns genes to epochs

assign_network()

Assigns genes to epochs

subnets()

Function to assign nodes to communities via Louvain clustering

split_epochs_by_group()

Splits data into epochs manually

split_epochs_by_pseudotime()

Splits data into epochs

biglist_compute_betweenness_degree()

Computes betweenness and degree of each regulator for each network in a list of networks

compute_JI_topregs()

Computes Jaccard similarity between top regulators in two sets of networks

compute_betweenness_degree()

Function to compute betweenness and degree

compute_frobenius_distance()

Computes frobenius distance in a pairwise manner between two sets of networks

cor_and_add_action()

Adds an extra column to the result of dynamic_shortest_path_multiple that predicts overall action based on correlation between "from" and "to"

find_communities()

find_communities

find_cuts_by_clustering()

Returns cuts to define epochs

find_cuts_by_similarity()

find_cuts_by_similarity

find_modules()

Find TF modules in regulatory network

find_motifs()

Scan for motifs in candidate regions

find_targets()

Finds binding targets given list of dataframes containing binding info for effectors

static_shortest_path()

Function to return shortest path from 1 regulator to 1 target in a static network

Calculate gene rank

calculate_gene_rank()

Calculate gene rank

compute_pagerank()

Function to compute page rank of TF+target networks

calculate_page_rank()

Calculate PageRank

plot_gene_rank()

Plot gene ranks and network properties

Network perturbation

Perturbation-class

The Perturbation class

SetNetwork()

Set Network object

calculate_trajectory()

Calculate cell trajectory in embedding space

embedPerturbation()

Embed perturbation results

plotPerturbation()

Visualize perturbation results

plotPerturbationTrajectory()

Plot perturbation trajectory

predictPerturbation()

Predict gene expression under TF perturbation

Utils functions

`%ss%`

Value selection operator

as_matrix()

Convert sparse matrix into dense matrix

check_sparsity()

Check sparsity of matrix

coef(<srm>) coef(<srm_cv>)

Extracts a specific solution in the regularization path

coef(<Network>)

Get fitted coefficients

coef(<CSNObject>)

Get fitted coefficients

dMcast()

Copy of the dMcast function from the Matrix.utils package, since this is off CRAN and does not seem to be maintained anymore

edge_rank()

Function to compute edge differences

fast_aggregate()

Copy of the aggregate.Matrix function from the Matrix.utils package, since this is off CRAN and does not seem to be maintained anymore

filter_sort_matrix()

Filter and sort matrix

get_umap()

Compute UMAP embedding

ig_NiceGraph()

returns a pretty graph given a grnTab and expression data

ig_convertLarge()

change igraph attributes so that it is suitable for plotting a small network

ig_convertMedium()

change igraph attributes so that it is suitable for plotting a medium network

ig_convertSmall()

change igraph attributes so that it is suitable for plotting a small network

wn_ig_tabToIgraph()

convert a table to an igraph

ig_convertTFs()

change igraph attributes so that it is suitable for plotting a network of only regs

ig_exemplars()

make a graph of the regulators, top targets, selecting only top XX targets each

ig_scaleV()

return a vector of scaled sizes for a vector of verticies

ig_tabToIgraph()

convert a table to an igraph

matrix_to_table()

Switch matrix to network table

mean_module_expression()

Computes mean expression of groups of genes

mean_subnetwork_expression()

Computes mean expression of groups of genes in a dynamic network

meta_cells()

Detection of metacells from single-cell gene expression matrix

network_format()

Format network table

normalization()

Normalize numeric vector

table_to_matrix()

Switch network table to matrix

order_genes()

Function that orders genes based on peak expression

parallelize_fun()

Parallelize a function

pearson_correlation()

Correlation and covariance calculation for sparse matrix

pre_pseudotime_matrix()

pre_pseudotime_matrix

print(<logo>)

print logo

print(<srm>) print(<srm_cv>)

Prints a summary of sparse_regression

predict(<srm>) predict(<srm_cv>)

Predicts response for a given sample

rough_hierarchy()

rough_hierarchy

sample_and_epoch_reconstruct()

Function to bootstrap Epoch reconstruction

score_targets()

Function to score targets of effectors

SetNetwork()

Set Network object

sparse_cor()

Safe correlation function which returns a sparse matrix without missing values

sparse_cov_cor()

Fast correlation and covariance calcualtion for sparse matrices

split_indices()

Split indices.

log_message()

Print diagnostic message

r_square()

\(R^2\) (coefficient of determination)

Class

initiate_object()

Initiate the CSNObject object

CSNObject-class

The CSNObject class

Modules-class

The Modules class

Network-class

The Network class

Regions-class

The Regions class

Example data and datasets

simulate_csn_data()

Simulate data for testing inferCSN

create_seurat_object()

Create a Seurat object from simulated data

example_matrix

Example matrix data

example_ground_truth

Example ground truth data

example_meta_data

Eexample_meta_data

EnsDb.Hsapiens.v93.annot.UCSC.hg38

EnsDb.Hsapiens.v93.annot.UCSC.hg38

SCREEN.ccRE.UCSC.hg38

SCREEN.ccRE.UCSC.hg38

phastConsElements20Mammals.UCSC.hg38

phastConsElements20Mammals.UCSC.hg38

motif2tf

motif2tf

motifs

motifs