returns rough roots in the network, rough roots selected as those connected to most number of nodes
rough_hierarchy(network_table, abs_weight = TRUE, directed = TRUE)
list
data("example_matrix")
network_table <- inferCSN(example_matrix)
#> ℹ [2025-05-28 02:35:38] Running for <dense matrix>.
#> ℹ [2025-05-28 02:35:38] Checking input parameters.
#> ℹ [2025-05-28 02:35:38] Using L0 sparse regression model.
#> ℹ [2025-05-28 02:35:38] Using 1 core
#> ✔ [2025-05-28 02:35:38] Run done.
rough_hierarchy(network_table)
#> $roots
#> [1] "g18" "g17" "g4" "g16" "g12" "g9" "g13" "g7" "g11" "g6" "g14" "g15"
#> [13] "g3" "g8" "g5" "g10" "g1" "g2"
#>
#> $num_paths
#> [1] 18
#>