Calculates AUROC and AUPRC metrics with optional visualization

calculate_auc(
  network_table,
  ground_truth,
  return_plot = FALSE,
  line_color = "#1563cc",
  line_width = 1,
  tag_levels = "A"
)

Arguments

network_table

A data frame of predicted network structure

ground_truth

A data frame of ground truth network

return_plot

Logical value indicating whether to generate plots

line_color

Color for plot lines

line_width

Width for plot lines

tag_levels

Tag levels for plot annotations

Value

A list containing metrics and optional plots

Examples

data("example_matrix")
data("example_ground_truth")
network_table <- inferCSN(example_matrix)
#>  [2025-07-28 09:32:49] Running for <dense matrix>.
#>  [2025-07-28 09:32:49] Checking input parameters.
#>  [2025-07-28 09:32:49] Using L0 sparse regression model.
#>  [2025-07-28 09:32:49] Using 1 core
#> ⠙ [2025-07-28 09:32:49] Running [1/18] ETA:  1s
#>  [2025-07-28 09:32:49] Completed 18 tasks in 227ms
#> 
#>  [2025-07-28 09:32:49] Building results
#>  [2025-07-28 09:32:49] Run done.
calculate_auc(
  network_table,
  example_ground_truth,
  return_plot = TRUE
)
#> $metrics
#>   Metric Value
#> 1  AUROC 0.952
#> 2  AUPRC 0.437
#> 
#> $plot

#>