Package index
-
inferCSN-package
- inferCSN: inferring cell-type specific gene regulatory network
-
inferCSN_logo()
- inferCSN logo
-
inferCSN()
- inferring cell-type specific gene regulatory network
-
network_sift()
- Sifting network
-
weight_sift()
- Weight sift
-
calculate_metrics()
- Calculate Network Prediction Performance Metrics
-
calculate_accuracy()
- Calculate Accuracy
-
calculate_auc()
- Calculate AUC Metrics
-
calculate_auroc()
- Calculate AUROC Metric
-
calculate_auprc()
- Calculate AUPRC Metric
-
calculate_precision()
- Calculate Precision Metric
-
calculate_recall()
- Calculate Recall Metric
-
calculate_f1()
- Calculate F1 Score
-
calculate_si()
- Calculate Set Intersection
-
calculate_ji()
- Calculate Jaccard Index
-
plot_contrast_networks()
- Plot contrast networks
-
plot_dynamic_networks()
- Plot dynamic networks
-
plot_network_heatmap()
- Plot network heatmap
-
plot_static_networks()
- Plot dynamic networks
-
plot_coefficient()
- Plot coefficients
-
plot_coefficients()
- Plot coefficients for multiple targets
-
plot_edges_comparison()
- Network Edge Comparison Visualization
-
plot_embedding()
- Plot embedding
-
plot_histogram()
- Plot histogram
-
plot_scatter()
- Plot expression data in a scatter plot
-
calculate_gene_rank()
- Rank TFs and genes in network
-
single_network()
- Construct network for single target gene
-
fit_srm()
- Sparse regression model
-
sparse_regression()
- Fit a sparse regression model
-
`%ss%`
- Value selection operator
-
as_matrix()
- Convert sparse matrix into dense matrix
-
check_sparsity()
- Check sparsity of matrix
-
coef(<srm>)
coef(<srm_cv>)
- Extracts a specific solution in the regularization path
-
filter_sort_matrix()
- Filter and sort matrix
-
log_message()
- Print diagnostic message
-
matrix_to_table()
- Switch matrix to network table
-
meta_cells()
- Detection of metacells from single-cell gene expression matrix
-
network_format()
- Format network table
-
normalization()
- Normalize numeric vector
-
parallelize_fun()
- Parallelize a function
-
pearson_correlation()
- Correlation and covariance calculation for sparse matrix
-
print(<logo>)
- print logo
-
print(<srm>)
print(<srm_cv>)
- Prints a summary of
sparse_regression
-
predict(<srm>)
predict(<srm_cv>)
- Predicts response for a given sample
-
r_square()
- \(R^2\) (coefficient of determination)
-
sparse_cor()
- Safe correlation function which returns a sparse matrix without missing values
-
sparse_cov_cor()
- Fast correlation and covariance calcualtion for sparse matrices
-
split_indices()
- Split indices.
-
simulate_sparse_matrix()
- Generate a simulated sparse matrix for single-cell data testing
-
subsampling()
- Subsampling function
-
table_to_matrix()
- Switch network table to matrix
-
example_matrix
- Example matrix data
-
example_meta_data
- Example meta data
-
example_ground_truth
- Example ground truth data