Skip to contents

Inferring cell-specific gene regulatory network

inferCSN-package
inferCSN: inferring cell-type specific gene regulatory network
inferCSN_logo()
inferCSN logo
inferCSN()
inferring cell-type specific gene regulatory network

Network processing

network_sift()
Sifting network
weight_sift()
Weight sift

Network evaluation

calculate_metrics()
Calculate Network Prediction Performance Metrics
calculate_accuracy()
Calculate Accuracy
calculate_auc()
Calculate AUC Metrics
calculate_auroc()
Calculate AUROC Metric
calculate_auprc()
Calculate AUPRC Metric
calculate_precision()
Calculate Precision Metric
calculate_recall()
Calculate Recall Metric
calculate_f1()
Calculate F1 Score
calculate_si()
Calculate Set Intersection
calculate_ji()
Calculate Jaccard Index

Network visualization

plot_contrast_networks()
Plot contrast networks
plot_dynamic_networks()
Plot dynamic networks
plot_network_heatmap()
Plot network heatmap
plot_static_networks()
Plot dynamic networks

Plotting functions

plot_coefficient()
Plot coefficients
plot_coefficients()
Plot coefficients for multiple targets
plot_edges_comparison()
Network Edge Comparison Visualization
plot_embedding()
Plot embedding
plot_histogram()
Plot histogram
plot_scatter()
Plot expression data in a scatter plot

Calculate gene rank

calculate_gene_rank()
Rank TFs and genes in network

Sparse regression model

single_network()
Construct network for single target gene
fit_srm()
Sparse regression model
sparse_regression()
Fit a sparse regression model

Utils functions

`%ss%`
Value selection operator
as_matrix()
Convert sparse matrix into dense matrix
check_sparsity()
Check sparsity of matrix
coef(<srm>) coef(<srm_cv>)
Extracts a specific solution in the regularization path
filter_sort_matrix()
Filter and sort matrix
log_message()
Print diagnostic message
matrix_to_table()
Switch matrix to network table
meta_cells()
Detection of metacells from single-cell gene expression matrix
network_format()
Format network table
normalization()
Normalize numeric vector
parallelize_fun()
Parallelize a function
pearson_correlation()
Correlation and covariance calculation for sparse matrix
print(<logo>)
print logo
print(<srm>) print(<srm_cv>)
Prints a summary of sparse_regression
predict(<srm>) predict(<srm_cv>)
Predicts response for a given sample
r_square()
\(R^2\) (coefficient of determination)
sparse_cor()
Safe correlation function which returns a sparse matrix without missing values
sparse_cov_cor()
Fast correlation and covariance calcualtion for sparse matrices
split_indices()
Split indices.
simulate_sparse_matrix()
Generate a simulated sparse matrix for single-cell data testing
subsampling()
Subsampling function
table_to_matrix()
Switch network table to matrix

Example data

example_matrix
Example matrix data
example_meta_data
Example meta data
example_ground_truth
Example ground truth data