Switch matrix to network table
matrix_to_table(network_matrix, regulators = NULL, targets = NULL)
Network table
data("example_matrix")
network_table <- inferCSN(example_matrix)
#> ✔ Running for <dense matrix>.
#> ✔ Checking input parameters.
#> ✔ Using L0 sparse regression model.
#> ✔ Using 1 core.
#> ✔ Run done.
network_matrix <- table_to_matrix(network_table)
network_table_new <- matrix_to_table(network_matrix)
head(network_table)
#> regulator target weight
#> 1 g17 g18 0.5443805
#> 2 g18 g1 -0.5390453
#> 3 g16 g15 0.4818454
#> 4 g17 g16 0.4599054
#> 5 g15 g14 0.4516497
#> 6 g14 g13 0.4483912
head(network_table_new)
#> regulator target weight
#> 1 g17 g18 0.5443805
#> 2 g18 g1 -0.5390453
#> 3 g16 g15 0.4818454
#> 4 g17 g16 0.4599054
#> 5 g15 g14 0.4516497
#> 6 g14 g13 0.4483912
identical(
network_table,
network_table_new
)
#> [1] TRUE