Format network table
Examples
data(example_matrix)
network_table <- inferCSN(example_matrix)
#> ℹ [2025-10-16 02:36:43] Running for <dense matrix>.
#> ◌ [2025-10-16 02:36:43] Checking input parameters...
#> ℹ [2025-10-16 02:36:43] Using `L0` sparse regression model
#> ℹ [2025-10-16 02:36:43] Using 1 core
#> ⠙ [2025-10-16 02:36:43] Running [1/18] ETA: 0s
#> ✔ [2025-10-16 02:36:43] Completed 18 tasks in 210ms
#>
#> ℹ [2025-10-16 02:36:43] Building results
#> ✔ [2025-10-16 02:36:44] Run done.
network_format(
network_table,
regulators = "g1"
)
#> regulator target weight Interaction
#> 1 g1 g2 0.668444900 Activation
#> 2 g1 g18 0.467602224 Repression
#> 3 g1 g17 0.047607627 Activation
#> 4 g1 g5 0.044895033 Activation
#> 5 g1 g9 0.042442058 Repression
#> 6 g1 g4 0.036589574 Repression
#> 7 g1 g6 0.030280993 Repression
#> 8 g1 g7 0.024014462 Activation
#> 9 g1 g16 0.018303456 Repression
#> 10 g1 g3 0.018050156 Activation
#> 11 g1 g15 0.015156339 Activation
#> 12 g1 g14 0.013970876 Repression
#> 13 g1 g12 0.011942835 Activation
#> 14 g1 g10 0.009393328 Activation
#> 15 g1 g8 0.009042402 Activation
#> 16 g1 g11 0.009009966 Activation
#> 17 g1 g13 0.001787438 Repression
network_format(
network_table,
regulators = "g1",
abs_weight = FALSE
)
#> regulator target weight
#> 1 g1 g2 0.668444900
#> 2 g1 g18 -0.467602224
#> 3 g1 g17 0.047607627
#> 4 g1 g5 0.044895033
#> 5 g1 g9 -0.042442058
#> 6 g1 g4 -0.036589574
#> 7 g1 g6 -0.030280993
#> 8 g1 g7 0.024014462
#> 9 g1 g16 -0.018303456
#> 10 g1 g3 0.018050156
#> 11 g1 g15 0.015156339
#> 12 g1 g14 -0.013970876
#> 13 g1 g12 0.011942835
#> 14 g1 g10 0.009393328
#> 15 g1 g8 0.009042402
#> 16 g1 g11 0.009009966
#> 17 g1 g13 -0.001787438
network_format(
network_table,
targets = "g3"
)
#> regulator target weight Interaction
#> 1 g4 g3 0.8103229841 Activation
#> 2 g2 g3 0.5491722960 Activation
#> 3 g5 g3 0.1539425396 Activation
#> 4 g12 g3 0.0560346972 Repression
#> 5 g18 g3 0.0558371348 Activation
#> 6 g17 g3 0.0523816646 Repression
#> 7 g14 g3 0.0504639514 Activation
#> 8 g7 g3 0.0425107240 Activation
#> 9 g15 g3 0.0361683897 Repression
#> 10 g10 g3 0.0313224187 Activation
#> 11 g16 g3 0.0270465616 Activation
#> 12 g13 g3 0.0258582091 Activation
#> 13 g11 g3 0.0229433379 Repression
#> 14 g1 g3 0.0180501564 Activation
#> 15 g8 g3 0.0099732575 Activation
#> 16 g9 g3 0.0095382542 Repression
#> 17 g6 g3 0.0008958639 Repression
network_format(
network_table,
regulators = c("g1", "g3"),
targets = c("g3", "g5")
)
#> regulator target weight Interaction
#> 1 g3 g5 0.12187906 Activation
#> 2 g1 g5 0.04489503 Activation
#> 3 g1 g3 0.01805016 Activation