Calculates AUROC and AUPRC metrics with optional visualization
Usage
calculate_auc(
network_table,
ground_truth,
return_plot = FALSE,
line_color = "#1563cc",
line_width = 1,
tag_levels = "A"
)Examples
data(example_matrix)
data("example_ground_truth")
network_table <- inferCSN(example_matrix)
#> ℹ [2025-10-30 09:48:56] Running for <dense matrix>.
#> ◌ [2025-10-30 09:48:56] Checking input parameters...
#> ℹ [2025-10-30 09:48:56] Using `L0` sparse regression model
#> ℹ [2025-10-30 09:48:56] Using 1 core
#> ⠙ [2025-10-30 09:48:56] Running [1/18] ETA: 0s
#> ✔ [2025-10-30 09:48:56] Completed 18 tasks in 227ms
#>
#> ℹ [2025-10-30 09:48:56] Building results
#> ✔ [2025-10-30 09:48:56] Run done.
calculate_auc(
network_table,
example_ground_truth,
return_plot = TRUE
)
#> $metrics
#> Metric Value
#> 1 AUROC 0.952
#> 2 AUPRC 0.437
#>
#> $plot
#>