Calculates AUROC and AUPRC metrics with optional visualization
Usage
calculate_auc(
network_table,
ground_truth,
return_plot = FALSE,
line_color = "#1563cc",
line_width = 1,
tag_levels = "A"
)Examples
data(example_matrix)
data("example_ground_truth")
network_table <- inferCSN(example_matrix)
#> ℹ [2026-01-09 07:09:25] Inferring network for <dense matrix>...
#> ◌ [2026-01-09 07:09:25] Checking parameters...
#> ℹ [2026-01-09 07:09:25] Using L0 sparse regression model
#> ℹ [2026-01-09 07:09:25] Using 1 core
#> ℹ [2026-01-09 07:09:25] Building results
#> ✔ [2026-01-09 07:09:25] Inferring network done
#> ℹ [2026-01-09 07:09:25] Network information:
#> ℹ Edges Regulators Targets
#> ℹ 1 306 18 18
calculate_auc(
network_table,
example_ground_truth,
return_plot = TRUE
)
#> $metrics
#> Metric Value
#> 1 AUROC 0.952
#> 2 AUPRC 0.437
#>
#> $plot
#>