Sifting network
Arguments
- network_table
The weight data table of network.
- matrix
The expression matrix.
- meta_data
The meta data for cells or samples.
- pseudotime_column
The column of pseudotime.
- method
The method used for filter edges. Could be choose
entropy
ormax
.- entropy_method
If setting
method
toentropy
, could be chooseShannon
orRenyi
to compute entropy.- effective_entropy
Default is
FALSE
. Logical value, using effective entropy to filter weights or not.- shuffles
Default is
100
. The number of shuffles used to calculate the effective transfer entropy.- entropy_nboot
Default is
300
. The number of bootstrap replications for each direction of the estimated transfer entropy.- lag_value
Default is
1
. Markov order of gene expression values, i.e. the number of lagged values affecting the current value of gene expression values.- entropy_p_value
P value used to filter edges by entropy.
- cores
The number of cores to use for parallelization with
foreach
, default is1
.- verbose
Logical value, default is
TRUE
, whether to print progress messages.
Examples
if (FALSE) { # \dontrun{
data("example_matrix")
data("example_meta_data")
data("example_ground_truth")
network_table <- inferCSN(example_matrix)
network_table_sifted <- network_sift(network_table)
network_table_sifted_entropy <- network_sift(
network_table,
matrix = example_matrix,
meta_data = example_meta_data,
pseudotime_column = "pseudotime",
lag_value = 2,
shuffles = 0,
entropy_nboot = 0
)
plot_network_heatmap(
example_ground_truth[, 1:3],
heatmap_title = "Ground truth",
show_names = TRUE,
rect_color = "gray70"
)
plot_network_heatmap(
network_table,
heatmap_title = "Raw",
show_names = TRUE,
rect_color = "gray70"
)
plot_network_heatmap(
network_table_sifted,
heatmap_title = "Filtered",
show_names = TRUE,
rect_color = "gray70"
)
plot_network_heatmap(
network_table_sifted_entropy,
heatmap_title = "Filtered by entropy",
show_names = TRUE,
rect_color = "gray70"
)
calculate_metrics(
network_table,
example_ground_truth,
return_plot = TRUE
)
calculate_metrics(
network_table_sifted,
example_ground_truth,
return_plot = TRUE
)
calculate_metrics(
network_table_sifted_entropy,
example_ground_truth,
return_plot = TRUE
)
} # }