This function subsamples a matrix using either random sampling or meta cells method.

subsampling(
  matrix,
  subsampling_method = "sample",
  subsampling_ratio = 1,
  seed = 1,
  verbose = TRUE,
  ...
)

Arguments

matrix

The input matrix to be subsampled.

subsampling_method

The method to use for subsampling. Options are "sample", "pseudobulk" or "meta_cells".

subsampling_ratio

The percent of all samples used for sparse_regression, default is 1.

seed

The random seed for cross-validation, default is 1.

verbose

Logical value, default is TRUE, whether to print progress messages.

...

Parameters for other methods.

Value

The subsampled matrix.

Examples

data("example_matrix")
data("example_ground_truth")
subsample_matrix <- subsampling(
  example_matrix,
  subsampling_ratio = 0.5
)
#>  Subsample matrix generated, dimensions: 2500 cells by 18 genes.
subsample_matrix_2 <- subsampling(
  example_matrix,
  subsampling_method = "meta_cells",
  subsampling_ratio = 0.5,
  fast_pca = FALSE
)
#> ! number of PCs of PCA result is less than the desired number, using all PCs.
#>  Subsample matrix generated, dimensions: 2500 cells by 18 genes.
subsample_matrix_3 <- subsampling(
  example_matrix,
  subsampling_method = "pseudobulk",
  subsampling_ratio = 0.5
)
#>  Subsample matrix generated, dimensions: 2500 cells by 18 genes.

calculate_metrics(
  inferCSN(example_matrix),
  example_ground_truth,
  plot = TRUE
)
#>  Running for <dense matrix>.
#>  Checking input parameters.
#>  Using L0 sparse regression model.
#>  Using 1 core
#>  Run done.

#>   AUROC AUPRC   ACC Precision Recall    F1    JI SI
#> 1 0.952 0.437 0.948         1  0.529 0.692 0.514 18
calculate_metrics(
  inferCSN(subsample_matrix),
  example_ground_truth,
  plot = TRUE
)
#>  Running for <dense matrix>.
#>  Checking input parameters.
#>  Using L0 sparse regression model.
#>  Using 1 core
#>  Run done.

#>   AUROC AUPRC   ACC Precision Recall    F1    JI SI
#> 1 0.955 0.449 0.948         1  0.529 0.692 0.514 18
calculate_metrics(
  inferCSN(subsample_matrix_2),
  example_ground_truth,
  plot = TRUE
)
#>  Running for <dense matrix>.
#>  Checking input parameters.
#>  Using L0 sparse regression model.
#>  Using 1 core
#>  Run done.

#>   AUROC AUPRC   ACC Precision Recall    F1    JI SI
#> 1 0.952 0.439 0.948         1  0.529 0.692 0.514 18
calculate_metrics(
  inferCSN(subsample_matrix_3),
  example_ground_truth,
  plot = TRUE
)
#>  Running for <dense matrix>.
#>  Checking input parameters.
#>  Using L0 sparse regression model.
#>  Using 1 core
#>  Run done.

#>   AUROC AUPRC   ACC Precision Recall    F1    JI SI
#> 1 0.955 0.449 0.948         1  0.529 0.692 0.514 18