Introduction
The scop package provides a comprehensive set of tools for single-cell omics data processing and downstream analysis:
- Integrated single-cell quality control methods, including doublet detection methods (scDblFinder, scds, Scrublet, DoubletDetection).
- Pipelines embedded with multiple methods for normalization, feature reduction (PCA, ICA, NMF, MDS, GLMPCA, UMAP, TriMap, LargeVis, PaCMAP, PHATE, DM, FR), and cell population identification.
- Pipelines embedded with multiple integration methods for scRNA-seq, including Uncorrected, Seurat, scVI, MNN, fastMNN, Harmony, Scanorama, BBKNN, CSS, LIGER, Conos, ComBat.
- Multiple single-cell downstream analyses such as identification of differential features, enrichment analysis, GSEA analysis, identification of dynamic features, PAGA, RNA velocity, Palantir, CellRank, WOT, Slingshot, CellChat, proportion test, dynamic enrichment analysis, and expressed marker identification.
- Multiple methods for automatic annotation of single-cell data (CellTypist, SingleR, Scmap, KNNPredict) and methods for projection between single-cell datasets (CSSMap, PCAMap, SeuratMap, SymphonyMap).
- High-quality data visualization methods.
- Fast deployment of single-cell data into SCExplorer, a shiny app that provides an interactive visualization interface.
The functions in scop are all developed around the Seurat object and are compatible with other Seurat functions.
Quick Start
-
scop: Single-Cell Omics analysis Pipeline
- Introduction
- Quick Start
- Credits
-
Installation
- R version requirement
- Prepare python environment
- Data exploration
- CellQC
- Standard pipeline
- Integration pipeline
- Cell projection between single-cell datasets
- Cell annotation using bulk RNA-seq datasets
- Cell annotation using single-cell datasets
- PAGA analysis
- Velocity analysis
- Differential expression analysis
- Enrichment analysis(over-representation)
- Enrichment analysis(GSEA)
- Trajectory inference
- Dynamic features
- Interactive data visualization with SCExplorer
- Other visualization examples
Credits
The scop package is developed based on the SCP package, making it compatible with Seurat V5 and adding support for single-cell omics data.
Installation
R version requirement
- R >= 4.1.0
You can install the latest version of scop with pak from GitHub with:
if (!require("pak", quietly = TRUE)) {
install.packages("pak")
}
pak::pak("mengxu98/scop")Prepare python environment
To run functions such as RunPAGA(), RunSCVELO(), scop requires conda to create a separate python environment. The default environment name is "scop_env". You can specify the environment name for scop by setting options(scop_envname = "new_name").
Now, you can run PrepareEnv() to create the python environment for scop. If the conda binary is not found, it will automatically download and install miniconda.
scop::PrepareEnv()To force scop to use a specific conda binary, it is recommended to set reticulate.conda_binary R option:
options(reticulate.conda_binary = "/path/to/conda")
scop::PrepareEnv()If the download of miniconda or pip packages is slow, you can specify the miniconda repo and PyPI mirror according to your network region.
scop::PrepareEnv(
miniconda_repo = "https://mirrors.bfsu.edu.cn/anaconda/miniconda",
pip_options = "-i https://pypi.tuna.tsinghua.edu.cn/simple"
)Available miniconda repositories:
https://repo.anaconda.com/miniconda (default)
Available PyPI mirrors:
https://pypi.python.org/simple (default)
Data exploration
The analysis is based on a subsetted version of mouse pancreas data.
library(scop)
data(pancreas_sub)
print(pancreas_sub)
#> An object of class Seurat
#> 47886 features across 1000 samples within 3 assays
#> Active assay: RNA (15962 features, 2000 variable features)
#> 3 layers present: counts, data, scale.data
#> 2 other assays present: spliced, unspliced
#> 2 dimensional reductions calculated: pca, umap
CellDimPlot(
srt = pancreas_sub,
group.by = c("CellType", "SubCellType"),
reduction = "UMAP",
theme_use = "theme_blank"
)
CellDimPlot(
srt = pancreas_sub,
group.by = "SubCellType",
stat.by = "Phase",
reduction = "UMAP",
theme_use = "theme_blank"
)
FeatureDimPlot(
srt = pancreas_sub,
features = c("Sox9", "Neurog3", "Fev", "Rbp4"),
reduction = "UMAP",
theme_use = "theme_blank"
)
FeatureDimPlot(
srt = pancreas_sub,
features = c("Ins1", "Gcg", "Sst", "Ghrl"),
compare_features = TRUE,
label = TRUE,
label_insitu = TRUE,
reduction = "UMAP",
theme_use = "theme_blank"
)
ht <- GroupHeatmap(
srt = pancreas_sub,
features = c(
"Sox9", "Anxa2", # Ductal
"Neurog3", "Hes6", # EPs
"Fev", "Neurod1", # Pre-endocrine
"Rbp4", "Pyy", # Endocrine
"Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon
),
group.by = c("CellType", "SubCellType"),
heatmap_palette = "YlOrRd",
cell_annotation = c("Phase", "G2M_score", "Cdh2"),
cell_annotation_palette = c("Dark2", "Paired", "Paired"),
show_row_names = TRUE, row_names_side = "left",
add_dot = TRUE, add_reticle = TRUE
)
print(ht$plot)
CellQC
pancreas_sub <- RunCellQC(srt = pancreas_sub)
CellDimPlot(srt = pancreas_sub, group.by = "CellQC", reduction = "UMAP")
CellStatPlot(srt = pancreas_sub, stat.by = "CellQC", group.by = "CellType", label = TRUE)
CellStatPlot(
srt = pancreas_sub,
stat.by = c(
"db_qc", "outlier_qc",
"umi_qc", "gene_qc",
"mito_qc", "ribo_qc",
"ribo_mito_ratio_qc", "species_qc"
),
plot_type = "upset",
stat_level = "Fail"
)
Standard pipeline
pancreas_sub <- standard_scop(srt = pancreas_sub)
CellDimPlot(
srt = pancreas_sub,
group.by = c("CellType", "SubCellType"),
reduction = "StandardUMAP2D",
theme_use = "theme_blank"
)
CellDimPlot3D(
srt = pancreas_sub,
group.by = "SubCellType"
)
FeatureDimPlot3D(
srt = pancreas_sub,
features = c("Sox9", "Neurog3", "Fev", "Rbp4")
)
Integration pipeline
Example data for integration is a subsetted version of panc8(eight human pancreas datasets)
data("panc8_sub")
panc8_sub <- integration_scop(
srt_merge = panc8_sub,
batch = "tech",
integration_method = "Seurat"
)
CellDimPlot(
srt = panc8_sub,
group.by = c("celltype", "tech"),
reduction = "SeuratUMAP2D",
title = "Seurat",
theme_use = "theme_blank"
)
Cell projection between single-cell datasets
genenames <- make.unique(
thisutils::capitalize(
rownames(panc8_sub[["RNA"]]
),
force_tolower = TRUE)
)
names(genenames) <- rownames(panc8_sub)
panc8_rename <- RenameFeatures(
srt = panc8_sub,
newnames = genenames,
assays = "RNA"
)
srt_query <- RunKNNMap(
srt_query = pancreas_sub,
srt_ref = panc8_rename,
ref_umap = "SeuratUMAP2D")
ProjectionPlot(
srt_query = srt_query,
srt_ref = panc8_rename,
query_group = "SubCellType",
ref_group = "celltype"
)
Cell annotation using bulk RNA-seq datasets
data("ref_scMCA")
pancreas_sub <- RunKNNPredict(
srt_query = pancreas_sub,
bulk_ref = ref_scMCA,
filter_lowfreq = 20
)
CellDimPlot(
srt = pancreas_sub,
group.by = "KNNPredict_classification",
reduction = "UMAP",
label = TRUE
)
Cell annotation using single-cell datasets
pancreas_sub <- RunKNNPredict(
srt_query = pancreas_sub,
srt_ref = panc8_rename,
ref_group = "celltype",
filter_lowfreq = 20
)
CellDimPlot(
srt = pancreas_sub,
group.by = "KNNPredict_classification",
reduction = "UMAP",
label = TRUE
)
ht <- CellCorHeatmap(
srt_query = pancreas_sub,
srt_ref = panc8_rename,
query_group = "SubCellType",
ref_group = "celltype",
nlabel = 3,
label_by = "row",
show_row_names = TRUE,
show_column_names = TRUE
)
print(ht$plot)
PAGA analysis
PrepareEnv()
pancreas_sub <- RunPAGA(
srt = pancreas_sub,
group_by = "SubCellType",
linear_reduction = "PCA",
nonlinear_reduction = "UMAP"
)
PAGAPlot(
srt = pancreas_sub,
reduction = "UMAP",
label = TRUE,
label_insitu = TRUE,
label_repel = TRUE
)
Velocity analysis
To estimate RNA velocity, both “spliced” and “unspliced” assays in Seurat object. You can generate these matrices using velocyto, bustools, or alevin.
pancreas_sub <- RunSCVELO(
srt = pancreas_sub,
group_by = "SubCellType",
linear_reduction = "PCA",
nonlinear_reduction = "UMAP"
)
VelocityPlot(
srt = pancreas_sub,
reduction = "UMAP",
group_by = "SubCellType"
)
VelocityPlot(
srt = pancreas_sub,
reduction = "UMAP",
plot_type = "stream"
)
Differential expression analysis
pancreas_sub <- RunDEtest(
srt = pancreas_sub,
group_by = "CellType",
fc.threshold = 1,
only.pos = FALSE
)
VolcanoPlot(
srt = pancreas_sub,
group_by = "CellType"
)
DEGs <- pancreas_sub@tools$DEtest_CellType$AllMarkers_wilcox
DEGs <- DEGs[with(DEGs, avg_log2FC > 1 & p_val_adj < 0.05), ]
# Annotate features with transcription factors and surface proteins
pancreas_sub <- AnnotateFeatures(
pancreas_sub,
species = "Mus_musculus",
db = c("TF", "CSPA")
)
ht <- FeatureHeatmap(
srt = pancreas_sub,
group.by = "CellType",
features = DEGs$gene,
feature_split = DEGs$group1,
species = "Mus_musculus",
db = c("GO_BP", "KEGG", "WikiPathway"),
anno_terms = TRUE,
feature_annotation = c("TF", "CSPA"),
feature_annotation_palcolor = list(
c("gold", "steelblue"), c("forestgreen")
),
height = 5, width = 4
)
print(ht$plot)
Enrichment analysis(over-representation)
pancreas_sub <- RunEnrichment(
srt = pancreas_sub,
group_by = "CellType",
db = "GO_BP",
species = "Mus_musculus",
DE_threshold = "avg_log2FC > log2(1.5) & p_val_adj < 0.05"
)
EnrichmentPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = c("Ductal", "Endocrine"),
plot_type = "bar"
)
EnrichmentPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = c("Ductal", "Endocrine"),
plot_type = "wordcloud"
)
EnrichmentPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = c("Ductal", "Endocrine"),
plot_type = "wordcloud",
word_type = "feature"
)
EnrichmentPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = "Ductal",
plot_type = "network"
)
To ensure that labels are visible, you can adjust the size of the viewer panel on Rstudio IDE.
EnrichmentPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = "Ductal",
plot_type = "enrichmap"
)
EnrichmentPlot(
srt = pancreas_sub,
group_by = "CellType",
plot_type = "comparison"
)
Enrichment analysis(GSEA)
pancreas_sub <- RunGSEA(
srt = pancreas_sub,
group_by = "CellType",
db = "GO_BP",
species = "Mus_musculus",
DE_threshold = "p_val_adj < 0.05"
)
GSEAPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = "Endocrine",
id_use = "GO:0007186"
)
GSEAPlot(
srt = pancreas_sub,
group_by = "CellType",
group_use = "Endocrine",
plot_type = "bar",
direction = "both",
topTerm = 20
)
Trajectory inference
pancreas_sub <- RunSlingshot(
srt = pancreas_sub,
group.by = "SubCellType",
reduction = "UMAP"
)
FeatureDimPlot(
pancreas_sub,
features = paste0("Lineage", 1:3),
reduction = "UMAP",
theme_use = "theme_blank"
)
Dynamic features
pancreas_sub <- RunDynamicFeatures(
srt = pancreas_sub,
lineages = c("Lineage1", "Lineage2"),
n_candidates = 200
)
ht <- DynamicHeatmap(
srt = pancreas_sub,
lineages = c("Lineage1", "Lineage2"),
use_fitted = TRUE,
n_split = 6,
reverse_ht = "Lineage1",
species = "Mus_musculus",
db = "GO_BP",
anno_terms = TRUE,
anno_keys = TRUE,
anno_features = TRUE,
heatmap_palette = "viridis",
cell_annotation = "SubCellType",
separate_annotation = list(
"SubCellType", c("Nnat", "Irx1")
),
separate_annotation_palette = c("Paired", "Set1"),
feature_annotation = c("TF", "CSPA"),
feature_annotation_palcolor = list(
c("gold", "steelblue"), c("forestgreen")
),
pseudotime_label = 25,
pseudotime_label_color = "red",
height = 5,
width = 2
)
print(ht$plot)
DynamicPlot(
srt = pancreas_sub,
lineages = c("Lineage1", "Lineage2"),
group.by = "SubCellType",
features = c(
"Plk1", "Hes1", "Neurod2", "Ghrl", "Gcg", "Ins2"
),
compare_lineages = TRUE,
compare_features = FALSE
)
FeatureStatPlot(
srt = pancreas_sub,
group.by = "SubCellType",
bg.by = "CellType",
stat.by = c("Sox9", "Neurod2", "Isl1", "Rbp4"),
add_box = TRUE,
comparisons = list(
c("Ductal", "Ngn3 low EP"),
c("Ngn3 high EP", "Pre-endocrine"),
c("Alpha", "Beta")
)
)
Interactive data visualization with SCExplorer
PrepareSCExplorer(
list(
mouse_pancreas = pancreas_sub,
human_pancreas = panc8_sub
),
base_dir = "./SCExplorer"
)
app <- RunSCExplorer(base_dir = "./SCExplorer")
list.files("./SCExplorer") # This directory can be used as site directory for Shiny Server.
if (interactive()) {
shiny::runApp(app)
}
Other visualization examples
CellStatPlot
FeatureStatPlot
GroupHeatmap
You can also find more examples in the documentation of the function: integration_scop, RunKNNMap, RunPalantir, etc.