Safe correlation function which returns a sparse matrix without missing values
Source:R/utils.R
sparse_cor.Rd
Safe correlation function which returns a sparse matrix without missing values
Usage
sparse_cor(
x,
y = NULL,
method = "pearson",
allow_neg = TRUE,
remove_na = TRUE,
remove_inf = TRUE,
...
)
Arguments
- x
Sparse matrix or character vector.
- y
Sparse matrix or character vector.
- method
Method to use for calculating the correlation coefficient.
- allow_neg
Logical. Whether to allow negative values or set them to 0.
- remove_na
Logical. Whether to replace NA values with 0.
- remove_inf
Logical. Whether to replace infinite values with 1.
- ...
Other arguments passed to
cor
function.
Examples
if (FALSE) { # \dontrun{
m1 <- simulate_sparse_matrix(
2000, 2000,
density = 0.01
)
m2 <- simulate_sparse_matrix(
2000, 1000,
density = 0.05
)
all.equal(
as_matrix(sparse_cor(m1)),
as_matrix(cor(as_matrix(m1)))
)
all.equal(
as_matrix(sparse_cor(m1, m2)),
as_matrix(cor(as_matrix(m1), as_matrix(m2)))
)
system.time(
sparse_cor(m1)
)
system.time(
cor(as_matrix(m1))
)
system.time(
sparse_cor(m1, m2)
)
system.time(
cor(as_matrix(m1), as_matrix(m2))
)
m1[sample(1:500, 10)] <- NA
m2[sample(1:500, 10)] <- NA
sparse_cor(m1, m2)[1:5, 1:5]
} # }